Los últimos datos sobre el meteoro de Chelyabinsk

Dibujo20131107 a 3D simulation of 15 february airbust over chelyabinsk - russia - web-Chelaybinsk_03

Simulación 3D del impacto del meteoro.

El 15 de febrero de 2013, un meteoro de tamaño medio impactó en la atmósfera terrestre en la región de Chelyabinsk, Rusia. Los datos iniciales sobre su trayectoria y la estimación mediante infrasonidos de su masa han sido revisados por dos artículos en Nature y un artículo en Science. El meteoro que impactó en Chelyabinsk tenía una masa entre 12.000 y 13.000 toneladas métricas, casi el doble de lo que se estimó en su momento, impactó en la atmósfera superior a una velocidad de unos 19 km/s, más de 50 veces la velocidad del sonido, liberando una energía de unos 500 kilotones de TNT que en gran parte fue absorbida por la atmósfera (lo que minimizó los daños). A una altura entre 30 y 45 km el meteoro se fracturó en miles de pedazos. Sólo se han encontrado unos pocos meteoritos, el mayor con 600 kg formó un agujero circular en el hielo de la superficie y acabó en el fondo del lago Chebarkul, a 60 km al suroeste de Chelyabinsk. Los modelos por ordenador predicen que un asteroide como el Chelyabinsk colisiona con la Tierra una vez cada 150 años (en promedio). Nos lo cuenta Quirin Schiermeier, «Risk of massive asteroid strike underestimated. Meteor in Chelyabinsk impact was twice as heavy as initially thought,» News, Nature, 5 Nov 2013. Los artículos técnicos en Nature son Jiří Borovička et al., «The trajectory, structure and origin of the Chelyabinsk asteroidal impactor,» Nature, AOP, 06 Nov 2013; y P. G. Brown et al., «A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors,» Nature, AOP 06 Nov 2013. El artículo en Science es Olga P. Popova et al., «Chelyabinsk Airburst, Damage Assessment, Meteorite Recovery, and Characterization,» Science, AOP 07 Nov 2013 [DOI].

Sigue leyendo

Francis en @TrendingCiencia: El levitón que transporta un electrón individual en un conductor

Dibujo20131103 light microscopy histological analysis controls and 3d bioactive models

Puedes escuchar mi nuevo podcast sobre Física para Trending Ciencia siguiendo este enlace. He elegido un artículo aparecido en la revista Nature el pasado 31 de octubre titulado «Minimal-excitation states for electron quantum optics using levitons» («estados de excitación mínima para la óptica cuántica de electrones usando levitones») cuyo autor principal es Christian Glattli, del Grupo de Nanoelectrónica del IRAMIS, en el centro CEA de Saclay, Francia, centro que pertenece al CNRS Francés, y la primera autora es Julie Dubois. El artículo presenta la observación experimental de un nuevo tipo de onda solitaria o solitón bautizada como «levitón». Los levitones son cuasipartículas formados por un número entero de electrones y se pueden usar para transportar electrones individuales a través de un conductor, es decir, actúan como fuentes de electrones individuales bajo demanda, lo que les hace tener múltiples aplicaciones en nanoelectrónica cuántica.

Por cierto, en el título del artículo técnico se habla de óptica cuántica de electrones, que también se traduce por óptica cuántica electrónica, quizás te preguntes qué es: se trata de usar técnicas con electrones en materiales conductores que están inspiradas en la óptica cuántica. Pero vayamos al grano, ¿qué son los levitones? Y lo más importante, ¿cómo han sido observados?

El nuevo artículo técnico es J. Dubois et al., «Minimal-excitation states for electron quantum optics using levitons,» Nature 502: 659–663, 31 Oct 2013. El podcast también está inspirado en Christian Flindt, «Quantum physics: Single electrons pop out of the Fermi sea,» News & Views, Nature 502: 630–632, 31 Oct 2013. Para los francófonos «Les lévitons : des électrons sans bruit pour l’optique quantique électronique,» IRAMIS, CEA Saclay, 29 Oct 2013.

Sigue leyendo

¿Cuántas moléculas de H2O se necesitan para formar agua líquida?

Dibujo20131103 structure of liquid water - predictions by laws of physics Nadie sabe la respuesta, pero parece evidente que debe ser un número finito de moléculas. Jeong-Hyuck Park (DAMTP, Univ. Cambridge, GB) ha calculado por ordenador, gracias a una analogía con un gas ideal de bosones, que en una caja cúbica se requieren 7.616 moléculas de agua y en un caja esférica 10.458. Conforme el número de moléculas en un gas a presión constante crece se produce una transición de fase que el autor considera que está asociada a la «emergencia» del concepto de agua. Para caracterizar una transición de fase entre dos fases se utiliza un diagrama que presenta la temperatura en función de la composición de ambas fases, la llamada descomposición espinodal; Park ha calculado el número de moléculas de agua para que aparezca un cambio brusco en la curva espinodal del sistema de bosones. El autor propone que este cambio es una característica genérica de las transiciones de fase líquido-gas, es decir, que la ebullición es un fenómeno emergente y puede ser calculada ab initio utilizando los principios básicos de la física estadística. Futuros estudios tendrán que refinar estos números y estudiar en detalle la dependencia con la forma del volumen que contiene el gas de bosones y las condiciones de contorno utilizadas (Dirichlet en este caso). El artículo técnico es Jeong-Hyuck Park, «How many is different? Answer from ideal Bose gas,» arXiv:1310.5580 [cond-mat.stat-mech], 21 Oct 2013. El artículo que realizó el cálculo es Jeong-Hyuck Park, Sang-Woo Kim, «Thermodynamic instability and first-order phase transition in an ideal Bose gas,» Phys. Rev. A 81: 063636, 2010. Sigue leyendo

Lo último sobre la anomalía a 5 sigmas en los datos de CDF del Tevatrón (Fermilab)

Dibujo20131103 cdf dijet anomaly - metjj_cdf10fb

En el año 2011 el experimento CDF del Tevatrón (Fermilab) observó una anomalía a 5 sigmas en los sucesos que producían un bosón W y dos chorros hadrónicos. El experimento DZero del Tevatrón refutó dicha señal. Tampoco se observó en el LHC (ATLAS y CMS). Un análisis preliminar en febrero 2013 descubrió que la causa era un error sistemático. El análisis oficial se acaba de publicar en ArXiv. Tras analizar 9,1 /fb de colisiones protón-antiprotón a 1,96 TeV c.m. no se observa ninguna anomalía en los canales WW, WZ y ZZ. La figura que abre esta entrada muestra cómo ha desaparecido la anomalía (mostrada en la figura de abajo). El artículo técnico es CDF Collaboration, «Search for a dijet resonance in events with jets and missing transverse energy in pp¯ collisions at √s=1.96 TeV,» arXiv:1310.7267 [hep-ex], 27 Oct 2013. Más información divulgativa en Tommaso Dorigo, «No Jet-Jet Bump In New CDF Diboson Analysis !,» AQDS, 29 Oct 2013.

Dibujo20131103 cdf dijet anomaly 2011

El experimento LUX no encuentra partículas WIMP de materia oscura de menos de 33 GeV

Dibujo20131030 lux 90 per cent confidence limit on spin-independent elastic wimp-nucleon cross section

La noticia del día es la rueda de prensa con los nuevos resultados del experimento Large Underground Xenon (LUX) de búsqueda de materia oscura en el Laboratorio Subterráneo de Sanford, Lead, Dakota del Sur. No se han encontrado partículas WIMP de masa menor de 33 GeV/c² durante los 85,3 días de estudio de 118 kg de xenón entre abril y agosto de 2013. Se descarta al 90% C.L. la interacción elástica de estas partículas WIMP con nucleones, interacción independiente del espín, con una sección eficaz superior a 7,6 × 10−46 cm². Un resultado espectacular y una mala noticia para quienes pensaban que la materia oscura son partículas WIMP de baja masa. El artículo técnico es D.S. Akeri et al., «First results from the LUX dark matter experiment at the Sanford Underground Research Facility,» Preprint enviado a PRL y ArXiv. Transparencias [slides PDF] utilizadas en la rueda de prensa de Rick Gaitskell (Brown) y Dan McKinsey (Yale). Más info divulgativa en Eugenie Samuel Reich, «No sign of dark matter in underground experiment. LUX, the most sensitive dark matter detector yet, fails to capture mysterious particles,» News Nature, 30 Oct 2013; Adrian Cho, «New Experiment Torpedoes Lightweight Dark Matter Particles,» Science NOW, 30 Oct 2013; y «First results from LUX experiment in South Dakota. World’s most sensitive dark matter detector operating at the Sanford Underground Research Faciility,» Sanford Lab News, Oct 30, 2013.

Sigue leyendo

Leonard Susskind nos cuenta qué son el campo y el bosón de Higgs

Como muchos ya sabéis, Lenny Susskind imparte cursos de adultos (como ya hacía Richard Feynman) en los que cuenta conceptos muy complicados de física a un público general (alumnos y exalumnos de la Univ. Stanford). Este vídeo titulado «Demystifying the Higgs Boson» es un buen ejemplo. Lenny nos explica qué es un campo, qué es al vacío de un campo, qué es la masa, cómo le da masa el campo de Higgs a los fermiones y cómo le da masa a los bosones vectoriales. Sin fórmulas matemáticas, pero con las ideas correctas. Algunas de las metáforas que usa ya las he añadido a mi bolso de metáforas sobre el Higgs. Muy recomendable esta charla.

Nueva medida del desdoblamiento hiperfino del positronio conforme con el modelo estándar

Dibujo20131028 summary DeltaHFS measurements from past experiments and new result - arxiv org

Hay muchas pequeñas discrepancias entre el modelo estándar de la física de partículas y las medidas experimentales. La mayoría deben ser debidas a errores sistemáticos en dichas medidas. El desdoblamiento hiperfino del positronio discrepa a 3,9 sigmas de las predicciones del modelo estándar. Una nueva medida obtenida por un dispositivo experimental diseñado para reducir los errores sistemáticos al máximo posible obtiene un valor a sólo 1,2 sigmas de la predicción teórica y a 2,7 sigmas de medidas anteriores. El nuevo resultado confirma que el modelo estándar sigue siendo una teoría muy robusta que resiste todos los avatares de los experimentos. La nueva física puede ocultarse en cualquier resquicio, por ello este tipo de resultados son muy importantes. El artículo técnico es A. Ishida et al., «New Precision Measurement of Hyperfine Splitting of Positronium,» arXiv:1310.6923 [hep-ex], 25 Oct 2013.

Sigue leyendo

Francis en @TrendingCiencia: El annus mirabilis de la teoría del big bang

Dibujo20131013 timeline for 1948 papers on formation elements and galaxies - alpher herman gamow

Mi nuevo podcast sobre Física para Trending Ciencia ya está disponible en este enlace. Como siempre una transcripción, enlaces e imágenes.

El tema de hoy es «The Big Bang Theory», pero no la popular sitcom de televisión, sino la historia de la teoría del big bang de George Gamow y Ralph Alpher, y su annus mirabilis, el año 1948. Pero antes tengo una primicia para tí, que me oyes todos los lunes en Trending Ciencia. Si estás en Málaga el próximo 12 de noviembre podrás asistir a mi conferencia «Lo que sabemos que no sabemos sobre el Big Bang.» Esta conferencia se iniciará recordando la historia que te voy a contar en este podcast, la historia del annus mirabilis de la teoría del big bang, el año 1948. ¡Ah! Por cierto, ¿conoces la historia del término «big bang» para referirse a la teoría de Gamow y Alpher?

Este podcast está basado en el artículo de P. J. E. Peebles, «Discovery of the Hot Big Bang: What happened in 1948,» arXiv:1310.2146 [physics.hist-ph], 8 Oct 2013.

Sigue leyendo

Francis en #rosavientos: La galaxia confirmada más antigua

Dibujo20131027 galaxy z8_GND_5 296 - 700 million year after big bang - hubble space telescope

Ya puedes escuchar en este enlace mi nuevo podcast en la sección ¡Eureka! de la Rosa de los Vientos de Onda Cero. Como siempre, una transcripción y algunos enlaces a artículos técnicos.

Esta semana ha sido noticia en algunos medios que se ha descubierto la galaxia más lejana conocida, cuya luz se emitió cuando el universo tenía 700 millones de años tras el big bang, en plena edad oscura. ¿No se conoce ninguna galaxia más lejana? La galaxia en cuestión se llama z8_GND_5296 y ha sido observada por un equipo internacional de astrónomos gracias al telescopio Keck-I situado en el volcán Mauna Kea, en Hawái, cuyo espejo segmentado de 36 trozos tiene un diámetro de 10 metros. La luz de esta galaxia presenta un desplazamiento al rojo de z = 7,51 según las medidas del espectrógrafo MOSFIRE. Se trata de la galaxia más lejana que ha sido observada gracias a la huella dactilar de las galaxias, la línea espectral de 21 centímetros del hidrógeno neutro, lo que significa que es la galaxia más lejana confirmada fuera de toda duda por espectrografía infrarroja y por ello su descubrimiento se ha publicado en la prestigiosa revista Nature. Sin embargo, se han observado galaxias más lejanas en las imágenes de cielo ultraprofundo de la nueva cámara UDF del telescopio espacial Hubble. Hay unas diez galaxias conocidas con desplazamiento al rojo z > 8, pero en todas ellas es imposible observar la huella dactilar de las galaxias y los astrónomos hablan de candidatos a galaxias, en lugar de galaxias confirmadas. El candidato a galaxia con mayor desplazamiento al rojo tiene z=12, se llama UDFj-39546284, fue observada por el telescopio espacial Hubble en septiembre de 2012 y por el espectrógrafo MOSFIRE del telescopio Keck-I en julio de 2013. La luz de este candidato a galaxia con z=12 se emitió cuando el universo tenía sólo 400 millones de años. También se han observado galaxias de alto desplazamiento al rojo cuya luz ha sido amplificada mediante lentes gravitatorias; la que tiene el récord actual es una galaxia llamada MACS 0647-JD con un valor z=11. Una de las misiones del futuro telescopio espacial James Webb, que será lanzado al espacio en 2018, será observar cientos de galaxias en la Edad Oscura del universo.

En mi blog también puedes leer «Una galaxia formando estrellas con rapidez cuando el universo tenía 700 millones de años,» 23 Oct 2013; el artículo técnico es S. L. Finkelstein et al., ”A galaxy rapidly forming stars 700 million years after the Big Bang at redshift 7.51,” Nature 502: 524–527, 24 Oct 2013arXiv:1310.6031 [astro-ph.CO]. Más información divulgativa en Maggie McKee, “Light from farthest galaxy yet discovered breaks through cosmic fog,” Nature News, 23 Oct 2013, y Dominik A. Riechers, “Astronomy: New distance record for galaxies,” Nature502: 459–460, 24 Oct 2013.

Sobre las galaxias de mayor desplazamiento al rojo observadas por el telescopio espacial Hubble recomiendo leer a Richard S. Ellis et al., «The abundance of star-forming galaxies in the redshift range 8.5-12: New results from the 2012 Hubble Ultra Deep Field Campaign,» The Astrophysical Journal Letters 763: L7, 20 Jan 2013arXiv:1211.6804 [astro-ph.CO]; y también P. Capak et al., «Keck-I MOSFIRE Spectroscopy of the z~12 candidate galaxy UDFj-39546284,» The Astrophysical Journal Letters 773: L14, 10 Aug 2013arXiv:1307.4089 [astro-ph.CO].

Sigue leyendo

Análogo óptico de laboratorio a una lente gravitacional

Dibujo20131027 Analogue of light deflection in a gravitational field and microstructured optical waveguide

La teoría de la relatividad general predice el efecto de lente gravitacional, la curvatura de la luz en la proximidad de un objeto estelar masivo. C. Sheng (Univ. Nanjing, China) y sus colegas han usado una guía de ondas óptica microestructurada alrededor de una microesfera para imitar el espaciotiempo curvo causado por la gravedad y su efecto como lente gravitacional sobre la luz. La microesfera está incrustada en un polímero PMMA que actúa como guía de ondas plana y distorsiona el índice de refracción efectivo de la guía, imitando la curvatura del espaciotiempo. Un modelo de «juguete» (toy model) para estudiar en laboratorio las lentes gravitacionales descritas por la relatividad general. El artículo técnico es C. Sheng et al., «Trapping light by mimicking gravitational lensing,» Nature Photonics, AOP 29 Sep 2013. Recomiendo leer a Ulf Leonhardt, «Transformation optics: Gravitational lens on a chip,» Nature Photonics, AOP 20 Oct 2013.

Sigue leyendo