Francis en @TrendingCiencia: El levitón que transporta un electrón individual en un conductor

Dibujo20131103 light microscopy histological analysis controls and 3d bioactive models

Puedes escuchar mi nuevo podcast sobre Física para Trending Ciencia siguiendo este enlace. He elegido un artículo aparecido en la revista Nature el pasado 31 de octubre titulado “Minimal-excitation states for electron quantum optics using levitons” (“estados de excitación mínima para la óptica cuántica de electrones usando levitones”) cuyo autor principal es Christian Glattli, del Grupo de Nanoelectrónica del IRAMIS, en el centro CEA de Saclay, Francia, centro que pertenece al CNRS Francés, y la primera autora es Julie Dubois. El artículo presenta la observación experimental de un nuevo tipo de onda solitaria o solitón bautizada como “levitón”. Los levitones son cuasipartículas formados por un número entero de electrones y se pueden usar para transportar electrones individuales a través de un conductor, es decir, actúan como fuentes de electrones individuales bajo demanda, lo que les hace tener múltiples aplicaciones en nanoelectrónica cuántica.

Por cierto, en el título del artículo técnico se habla de óptica cuántica de electrones, que también se traduce por óptica cuántica electrónica, quizás te preguntes qué es: se trata de usar técnicas con electrones en materiales conductores que están inspiradas en la óptica cuántica. Pero vayamos al grano, ¿qué son los levitones? Y lo más importante, ¿cómo han sido observados?

El nuevo artículo técnico es J. Dubois et al., “Minimal-excitation states for electron quantum optics using levitons,” Nature 502: 659–663, 31 Oct 2013. El podcast también está inspirado en Christian Flindt, “Quantum physics: Single electrons pop out of the Fermi sea,” News & Views, Nature 502: 630–632, 31 Oct 2013. Para los francófonos “Les lévitons : des électrons sans bruit pour l’optique quantique électronique,” IRAMIS, CEA Saclay, 29 Oct 2013.

Sigue leyendo

Logran un haz de Airy de electrones (solución no dispersiva de la ecuación de Schrödinger)

Dibujo20130220 Holographic generation of an electron Airy beam

La solución de Airy de la ecuación de Schrödinger de la mecánica cuántica corresponde a un paquete de ondas no dispersivo que se propaga a lo largo de una curva parabólica en ausencia de fuerzas externas. Su existencia fue demostrada con fotones hace 30 años. Un nuevo artículo en Nature la demuestra con electrones utilizando técnicas holográficas (en la nanoescala) similares a las usadas en el caso óptico. Los haces de Airy de electrones permitirán realizar con electrones cosas que hasta ahora sólo eran posibles con fotones (interferómetros de electrones, vórtices de electrones, etc.). El artículo técnico es Noa Voloch-Bloch, Yossi Lereah, Yigal Lilach, Avraham Gover, Ady Arie, “Generation of electron Airy beams,” Nature 494: 331-335, 21 Feb 2013 [arXiv:1205.2112].

Sigue leyendo

Observada la película de la recombinación de un solo electrón gracias a la interferometría de doble rendija

Dibujo20090819_Harmonic_phase_interferometry_of_molecular_orbitals_during_electron_recombination

Parece increíble, pero se ha podido observar la dinámica de la recombinación de un electrón gracias a la interferometría de alto armónico que alcanza una resolución espacial por debajo del Angström y temporal del orden de los attosegundos (10−18 s.). Es como ver una película a cámara lenta que muestra la dinámica (cuántica) de un solo electrón cuando se ioniza una molécula de CO2. Un láser intenso incide sobre la molécula, el electrón salta dejando un hueco y luego retorna a ella (recombinación). Un movimiento ultrarrápido que se ha observado por primera vez. Al filo de lo imposible. Nos lo cuenta Marc Vrakking, “Electronic movies,” Nature 460: 960-961, 20 August 2009, haciéndose eco del artículo técnico Olga Smirnova et al., “High harmonic interferometry of multi-electron dynamics in molecules,” Nature 460: 972-977, 20 August 2009 (la información suplementaria merece la pena leerse).

La nueva técnica permite ver la dinámica de moléculas como si se enfocara una cámara CCD microscópica (en el dispositivo experimental se usa una para grabar la película de las bandas de inteferencia producidas por el interferómetro que permiten observar la dinámica en tiempo real). Los autores han sido capaces de “ver” los orbitales de la molécula que intervienen en el proceso “íntimo” de la recombinación del electrón. En concreto han observado tres orbitales y tres estados del ión. Variando la polarización de los láseres utilizados en el interferómetro varían la contribución de cada orbital en las franjas observadas, por lo que pueden reconstruir experimentalmente la forma de dichos orbitales y su contribución al proceso. El proceso les ha permitido ver cómo afecta el hueco que se crea cuando salta el electrón en los orbitales de la molécula. 

La nueva técnica se podría bautizar como microscopio multielectrónico por interferometría de alto armónico. Un gran avance en attofotónica un campo extremadamente activo con un gran número de grupos de investigación por todo el mundo que acabará conduciendo a gran número de avances en nuestra comprensión de muchos fenómenos que ocurren demasiado rápido.