Supongamos que el LHC del CERN descubre el bosón de Higgs. ¿Qué importancia «científica» tendría dicho descubrimiento para el «hombre de la calle»? Quizás lo más importante es que el bosón de Higgs sería un nuevo tipo de materia, el primero encontrado en más de un siglo. Es verdad que se han descubierto muchas partículas nuevas «parecidas» al electrón (neutrinos, quarks, etc.) y que se han descubierto muchas partículas nuevas «parecidas» al fotón (bosones W y Z, gluones, etc.), pero el bosón del Higgs sería la primera partícula elemental tipo bosón escalar encontrada en toda la historia. Un nuevo tipo de materia completamente «nuevo».
La primera cuestión es ¿qué bosón de Higgs se ha descubierto? ¿Cómo…? ¿Hay más de uno? Bueno, hay muchos modelos matemáticos (teóricos) para una partícula «tipo» bosón de Higgs (una revisión técnica pero al mismo tiempo asequible es «HIGGS BOSONS: THEORY AND SEARCHES,» de G. Bernardi et al., Particle Data Group, November 2007; esta entrada también está basada en G. L. Kane et al., «What will we learn if a Higgs boson is found [at LEP2]?,» Phys.Rev. D64, 095013, (2001), ArXiv preprint).
Recapitulemos. Está el bosón de Higgs que aparece en la teoría electrodébil (en el Modelo Estándar) que dota de masa a los bosones vectoriales W y Z pero no al fotón. Se supone que este bosón podría dar también masa a los fermiones (electrones, neutrinos, quarks) pero posiblemente haya otros bosones de Higgs que se encarguen de ello. Pero también hay otros bosones de Higgs (otros modelos). El bosón de Higgs en las teorías supersimétricas es mucho más ligero y también se han propuesto modelos en los que el bosón de Higgs es una partícula compuesta de otros más elementales. Hasta que no se observe el Higgs y se determinen sus propiedades no sabremos «cuál/es es/son realmente.»
Un bosón de Higgs con un masa en reposo inferior a 130 GeV, pongamos 120 GeV (casi 128 veces la masa del protón), será supersimétrico casi con toda seguridad y vendrá acompañado de una «parejita» (otro bosón de Higgs). Con una masa entre 130 y 180 GeV será el del Modelo Estándar (un bosón único). Con una masa mayor hay muchas otras posibilidades, por ejemplo entre 180 y 230 GeV será un bosón compuesto (teorías de technicolor).
Una curiosidad, casi sorprendente, es que el primer bosón de Higgs encontrado no sea el más ligero (de menor masa en reposo) sino el segundo, que haya un bosón de Higgs más ligero que esté fuertemente desacoplado del resto del Modelo Estándar y que por ello haya sido «descartado erróneamente» en los límites a la masa del bosón de Higgs más ligero obtenidos con el LEP2 del CERN, que aseguran una masa mayor de 115 GeV. Para muchos investigadores esta posibilidad es la «más natural» ya que permitiría que el bosón de Higgs más ligero tuviera una masa en reposo similar a la masa de los bosones W y Z (ligeramente mayor que la del bosón Z). Ello evita que haya que realizar ciertos «malabarismos» técnicos para desplazar la masa en reposo del Higgs unos 30 GeV más que la masa del bosón Z, su valor «natural» (si suponemos que tiene unos 120 GeV).
¿Pero cómo es posible que un bosón de Higgs supersimétrico tenga una masa inferior al límite de 115 GeV obtenido con el LEP-2 del CERN? Si la ruptura de la simetría electrodébil es mediada por la supersimetría, entonces la masa de un bosón de Higgs tipo el del Modelo Estándar, que ha sido restringida por los resultados del experimento, no está relacionada con los acoplamientos de la fuerza débil en el Modelo Estándar y un bosón de Higgs supersimétrico no tendría que cumplir dicho límite inferior. En relación a este tipo de estudios, os recomiendo el reciente artículo de Puneet Batra, Eduardo Ponton, de la Universidad de Columbia, «The Supersymmetric Higgs,» ArXiv preprint, 22 Sep 2008 .
Para algunos autores es más «natural» un bosón de Higgs (supersimétrico) de baja masa que un Higgs del tipo del Modelo Estándar. Pero, ¿qué entendemos por «natural»? El Principio de Naturalidad, como el Principio Antrópico, es una guía para la selección de modelos teóricos con información estrictamente teórica, cuando no hay información experimental. Siguiendo al genial y premiado con el Nobel ‘t Hooft, el Principio de la Naturalidad nos dice que si la Naturalieza muestra un parámetro con un valor pequeño a cierta escala de energía, entonces necesariamente en el límite en el que el parámetro se vuelva nulo el sistema debe ganar simetría, debe tender a un estado más simétrico (para una descripción más técnica pero comprensible ver por ejemplo «NATURALNESS AND ELECTRO-WEAK SYMMETRY BREAKING,» de Romesh K. Kaul, ArXiv preprint, 26 May 2008 ) .
La Electrodinámica Cuántica (QED) y la Cromodinámica Cuántica (QCD) son teorías perfectamente naturales. Tanto en QED como en QCD la masa de las partículas (electrones y quarks) está asociada a una ruptura de la simetría y cuando estas masas se hacen cero, la simetría se recupera. Sin embargo, una teoría con un campo escalar que corresponda a una partícula elemental tipo bosón escalar (no se ha descubierto todavía ninguna) «no es natural» ya que su correspondiente masa no está asociada a ninguna simetría aproximada y hacer que tienda a cero no introduce ninguna simetría adicional. La teoría electrodébil (EW) no es natural porque requiere de un campo escalar (el bosón de Higgs) que destruye la «naturalidad» que podría tener la teoría.
La solución más sencilla al problema de la falta de naturalidad de la teoría electrodébil es suponer que el bosón de Higgs es una partícula compuesta (no elemental). Por ejemplo, una combinación sin espín (por eso es una partícula escalar) de un fermión y un antifermión. A esta solución se la denomina teoría del technicolor. De hecho, ambos fermiones, llamados techniquarks, podrían estar confinados en el bosón de Higgs (como los quarks en un protón) y por tanto no podrían ser observadas como partículas «separadas» (tampoco podemos observar a los quarks de esta forma). ¿Podrían ser los tecniquarks iguales a los quarks? No, en dicho caso deberían ser quarks top o cima (un cima y un anticima) pero un tal Higgs requeriría que la masa del quark cima fuera mayor que la experimentalmente medida en la actualidad.
El technicolor es una solución al problema de la naturalidad que no gusta a todo el mundo, especialmente por que hay otra solución (hay muchas más, por supuesto) que gusta a mucha más gente, la supersimetría, como descubrió R.K. Kaul en 1982. La supersimetría está rota pero se recupera cuando la masa de partículas escalares como los bosones de Higgs se hacen tender a cero, como exige el Principio de Naturalidad. Es una solución elegante y simple, que además sólo requiere teorías de tipo perturbativo, lo que simplifica la matemática. Por ello, es más «natural» concebir un bosón de Higgs como partícula supersimétrica que no siéndolo.
Un descubrimiento en el LHC que mataría «dos pájaros de un solo tiro» sería el descubrimiento de no uno sino dos bosones de Higgs con una masa del orden de 120 GeV, ya que ello casaría a la perfección con las predicciones del Modelo Estándar Minimal Supersimétrico (MSSM). Llamémosles Higgs Up (HU) y Down (HD). Uno de estos bosones de Higgs podría, incluso, tener una masa inferior a 115 GeV (de unos 95 GeV) y el otro una un poco más grande. Permitidme para acabar una «broma»: algunos claman que el bosón de Higgs es la «partícula de Dios», pero si se descubrieran dos Higgs, ¿seguría siéndolo?