Los físicos de partículas también son cazatesoros de antiguos naufragios

Dibujo20131107  lead ingots from 2000-year-old Roman wrecks - science mag
Mucha gente no lo sabe, pero los físicos de partículas dedicados a la búsqueda de la materia oscura buscan con tesón en los restos de antiguos naufragios unos tesoros de gran valor; bueno, de gran valor para ellos, pues el resto de los cazatesoros no los valoran en demasía, pues buscan el plomo utilizado como lastre en los barcos hundidos hace más de 2.000 años. Los físicos de CDMS (Cryogenic Dark Matter Search) en la mina de Soudan, Minnesota, y CUORE (Cryogenic Underground Observatory for Rare Events) en L’Aquila, Italia, se encuentran con un problema, a los arqueólogos submarinos no les gusta que haya que fundir lingotes de plomo de hace 2.000 años, aunque sea para construir blindajes contra la radiación (el plomo actual es radiactivo porque tiene pequeñas cantidades de plomo-210, isótopo radiactivo que tiene una vida media de 22,3 años). ¿Moralmente es correcto fundir objetos de plomo que forman parte del pasado de la humanidad? Por el momento no hay mucho debate, pero quizás pronto lo haya. Nos lo cuenta “Particle Physicists Seek a Roman Shield,” News of the Week, Science Science 342: 540-541, 01 Nov 2013, que se hace eco de Elena Pérez-Alvaro (Univ. Birmingham, GB), “Experiments on Particle Physics Using Underwater Cultural Heritage: The Dilemma,” Rosetta 13: 40-46, 2013 [PDF].

PS: Estos detectores se instalan en laboratorios subterráneas bajo montañas para protegerlos de la radiación exterior. En los experimentos como tales se utilizan blindajes de plomo contra la radiación. El problema son las radioimpurezas del blindaje y los materiales que componen los detectores (sobre todo la radioactividad beta, que produce neutrinos indeseados). Se puede utilizar un modelo optimizado de la radiactividad de fondo, pero en los experimentos criogénicos todavía no se conocen buenos modelos, por lo que conviene utilizar materiales con pocas radioimpurezas.

Lo último sobre la anomalía a 5 sigmas en los datos de CDF del Tevatrón (Fermilab)

Dibujo20131103 cdf dijet anomaly - metjj_cdf10fb

En el año 2011 el experimento CDF del Tevatrón (Fermilab) observó una anomalía a 5 sigmas en los sucesos que producían un bosón W y dos chorros hadrónicos. El experimento DZero del Tevatrón refutó dicha señal. Tampoco se observó en el LHC (ATLAS y CMS). Un análisis preliminar en febrero 2013 descubrió que la causa era un error sistemático. El análisis oficial se acaba de publicar en ArXiv. Tras analizar 9,1 /fb de colisiones protón-antiprotón a 1,96 TeV c.m. no se observa ninguna anomalía en los canales WW, WZ y ZZ. La figura que abre esta entrada muestra cómo ha desaparecido la anomalía (mostrada en la figura de abajo). El artículo técnico es CDF Collaboration, “Search for a dijet resonance in events with jets and missing transverse energy in pp¯ collisions at √s=1.96 TeV,” arXiv:1310.7267 [hep-ex], 27 Oct 2013. Más información divulgativa en Tommaso Dorigo, “No Jet-Jet Bump In New CDF Diboson Analysis !,” AQDS, 29 Oct 2013.

Dibujo20131103 cdf dijet anomaly 2011

Francis en @TrendingCiencia: El annus mirabilis de la teoría del big bang

Dibujo20131013 timeline for 1948 papers on formation elements and galaxies - alpher herman gamow

Mi nuevo podcast sobre Física para Trending Ciencia ya está disponible en este enlace. Como siempre una transcripción, enlaces e imágenes.

El tema de hoy es “The Big Bang Theory”, pero no la popular sitcom de televisión, sino la historia de la teoría del big bang de George Gamow y Ralph Alpher, y su annus mirabilis, el año 1948. Pero antes tengo una primicia para tí, que me oyes todos los lunes en Trending Ciencia. Si estás en Málaga el próximo 12 de noviembre podrás asistir a mi conferencia “Lo que sabemos que no sabemos sobre el Big Bang.” Esta conferencia se iniciará recordando la historia que te voy a contar en este podcast, la historia del annus mirabilis de la teoría del big bang, el año 1948. ¡Ah! Por cierto, ¿conoces la historia del término “big bang” para referirse a la teoría de Gamow y Alpher?

Este podcast está basado en el artículo de P. J. E. Peebles, “Discovery of the Hot Big Bang: What happened in 1948,” arXiv:1310.2146 [physics.hist-ph], 8 Oct 2013.

Sigue leyendo

Cauchy y el rigor en el análisis matemático

Dibujo20131015 cours d analyse - cauchy - book cover and photograph

Muchos historiadores de la matemática afirman que el rigor en matemáticas nació con Augustin-Louis Cauchy. Todo un revolucionario, Cauchy trató de establecer una base rigurosa para el análisis matemático. Un buen ejemplo fue su demostración del teorema del valor intermedio, que afirma que toda función real f(x) continua en un intervalo [a,b] asume cada valor posible entre f(a) y f(b) en ese intervalo. Parece obvio gracias a la idea intuitiva de continuidad y de hecho hasta Cauchy nadie pensó que fuera necesario demostrarlo, pero hoy en día todos los estudiantes de matemáticas se pelean con su demostración rigurosa (aunque sin saberlo, como homenaje en memoria de Cauchy). Por cierto, Cauchy enseñó la demostración de este teorema por primera vez en el curso que impartió en la École Royale Polytechnique en 1816. Su libro de texto de 1821, admirado por más de una generación de matemáticos, presenta dos demostraciones diferentes; la más famosa, la que todos los estudiantes de matemáticas aprenden, fue relegada a un apéndice. Nos lo recuerda Michael J. Barany, “Stuck in the Middle: Cauchy’s Intermediate Value Theorem and the History of Analytic Rigor,” Notices of the AMS 60: 1334-1338, Nov. 2013.

Sigue leyendo

Oppenheimer, Dirac y la protohistoria del antiprotón

Dibujo20131020 bevatron 1955 - most powerful accelerator - protons at 6p5 GeV

Bevatrón, inaugurado en 1955, aceleraba protones a 6,5 GeV.

Robert Oppenheimer propuso en 1930 que el antielectrón predicho por la ecuación de Dirac en 1928 no era el protón, como sugirió el propio Paul Dirac en 1930, por su diferencia de masa y porque el átomo de hidrógeno sería inestable. Más aún, propuso que debía existir un antiprotón asociado al protón. Tras el descubrimiento del positrón (antielectrón), Dirac recibió el Premio Nobel en 1933 y en su Discurso Nobel acabó diciendo que debía existir un antiprotón asociado al protón. El antiprotón fue descubierto en los experimentos en 1955 por Emilio Segrè y Owen Chamberlain (ambos de la Universidad de California, Berkeley), que recibieron por ello el Premio Nobel en 1959. Permíteme recordar la protohistoria del antiprotón.

La ecuación relativista para el electrón propuesta por Paul Dirac en 1928 predecía la existencia de estados de energía negativa [1]. Cada estado del electrón de energía positiva +E estaría acompañado de un estado de energía negativa −E. Como un electrón en movimiento acelerado emite radiación y pierde energía, todo electrón con energía positiva acabaría alcanzando una energía negativa y el proceso continuaría ad infinitum. Este hecho no se observa en los experimentos.

Para resolver este problema, Dirac recurrió en 1929 al principio de exclusión de Pauli e introdujo el llamado “mar de Dirac” [2]. En el estado de “vacío” de su ecuación, todos los estados de energía negativa están ocupados, por lo que no se observan electrones de energía negativa en los experimentos. Pero pueden existir “huecos” en este “mar” de estados de energía negativa, que se observan como una partícula de energía positiva pero con carga positiva. La única partícula conocida entonces con carga positiva era el protón, por lo que Dirac tituló su artículo, que apareció en la revista el 1 de enero de 1930, como “Una teoría de electrones y protones” [2], aunque reconocía que no tenía una explicación física del porqué la masa de los protones y los electrones es diferente.

Dibujo20131020 first image annihilation star - discovery of antiproton

Descubrimiento del antiprotón.

Robert J. Oppenheimer, tras leer el artículo de Dirac, escribió una crítica titulada “Sobre la teoría de electrones y protones” que apareció en Physical Review dos meses más tarde [3]. Por un lado, si todos los estados de energía negativa estaban ocupados, no le parecía razonable que existieran en el universo tantos protones como electrones. Además, la partícula de carga positiva predicha por Dirac se podría aniquilar con un electrón produciendo dos fotones, con lo que el átomo de hidrógeno sería inestable. Por todo ello Oppenheimer predijo que si el electrón tenía estados de energía negativa ocupados, entonces el protón también tendría que tenerlos. Aunque no utiliza de forma explícita la palabra “antiprotón” (dado que hasta entonces nadie había utilizado la palabra “antielectrón”), el párrafo final del artículo de Oppenheimer sugiere la existencia del antiprotón y en la mayoría de los libros de historia de la física de partículas aparece como el “padre” del antiprotón.

En la wikipedia pone que Dirac predijo (o intuyó) el antiprotón en su Discurso Nobel en 1933 [4]. Su párrafo final predice la existencia de la antimateria: “Si aceptamos la simetría completa entre los estados de carga eléctrica positiva y negativa como una de las leyes fundamentales de la Naturaleza, podría ocurrir que fuera un accidente que en la Tierra (y en el Sistema Solar) predominen los electrones y los protones. Puede que haya estrellas hechas de positrones y “protones negativos”. Puede incluso que la mitad de las estrellas sean así.” Los protones negativos de Dirac es lo que hoy en día llamamos antiprotones. Dirac sugiere que puede existir la antimateria, antiátomos formados por antiprotones y positrones.

Dibujo20131020 Emilio Segre - Clyde Wiegand - Edward Lofgren - Owen Chamberlain - Thomas Ypsilantis

Emilio Segré, Owen Chamberlain y tres colegas.

El descubrimiento del antiprotón fue publicado el 1 de noviembre de de 1955 en Physical Review Letters [5]. Owen Chamberlain, Emilio Segrè, Clyde Wiegand y Thomas Ypsilantis, miembros del Laboratorio de Radiación de la Universidad de California en Berkeley, observaron una nueva partícula subatómica, idéntica al protón, pero con carga eléctrica negativa en lugar de positiva. Utilizaron el recién inaugurado Bevatrón, entonces el acelerador de partículas más potente del mundo, capaz de acelerar protones hasta energías de unos 6,5 GeV. La observación de un antiprotón requería crear un par protón-antiprotón, es decir, una energía superior al doble de su masa, unos 2 GeV. En el Bevatrón se decidió hacer incidir un haz de protones de 6,5 GeV en un blanco de neutrones estacionario.

En 1954, Ernest O. Lawrence, inventor del ciclotrón en 1931, Premio Nobel de 1939, decidió construir el Bevatrón en su Laboratorio de la Universidad de California en Berkeley para buscar el antiprotón. Este laboratorio, tras su muerte en 1958, fue rebautizado Laboratorio Lawrence Berkeley. Dos equipos decidieron buscar el antiprotón de forma independiente. Un equipo dirigido por Edward Lofgren y el otro por Owen Chamberlain y Emilio Segrè. Este último descubrió el antiprotón en 1955 y sus líderes obtuvieron el Premio Nobel en 1959. Pero relatar los detalles será objeto de una futura entrada.

Coda final. Un día como hoy en 1984, 20 de octubre, falleció P.A.M. Dirac. Por ello esta entrada participa en la XLV edición del Carnaval de la Física, alojado en esta ocasión por Cuantos y cuerdas.

Referencias

[1] P. A. M. Dirac, “The Quantum Theory of the Electron,” Proc. R. Soc. Lond. A 117: 610-624, 01 Feb 1928 [pdf gratis]; P. A. M. Dirac, “The Quantum Theory of the Electron. Part II,” Proc. R. Soc. Lond. A 118: 351-361, 01 Mar 1928 [pdf gratis].

[2] P. A. M. Dirac, “A Theory of Electrons and Protons,” Proc. R. Soc. Lond. A 126: 360-365, 01 Jan 1930 [pdf gratis].

[3] J. R. Oppenheimer, “On the Theory of Electrons and Protons,” Physical Review 35: 562-563, 01 Mar 1930 [pdf gratis].

[4] P. A. M. Dirac, “Theory of electrons and positrons,” Nobel Lecture, 12 Dec 1933 [pdf gratis].

[5] Owen Chamberlain, Emilio Segrè, Clyde Wiegand, and Thomas Ypsilantis, “Observation of Antiprotons,” Phys. Rev. 100: 947–950, 01 Nov 1955 [pdf gratis].

Francis en @TrendingCiencia: Philip Anderson, el Higgs y la “higgsogénesis”

Dibujo20120711 philip anderson - celebs lists com imagesAlgunos lectores de este blog se han preguntado quién es Philip Anderson y qué tiene que ver con el bosón de Higgs. Te lo cuento en mi nuevo podcast para Trending Ciencia, que también discute la “higgsogénesis” como explicación de la asimetría materia-antimateria.

Confirmado, como ya predije, el Premio Nobel de Física de 2013 ha sido otorgado a dos de los tres físicos teóricos que formularon el mecanismo de Brout-Englert-Higgs que da masa a las partículas fundamentales y que predice la existencia del bosón de Higgs. François Englert, de la Universidad Libre de Bruselas, Bélgica, junto al ya fallecido Robert Brout, de la misma universidad, y Peter Higgs, de la Universidad de Edimburgo, Escocia, publicaron esta teoría en 1964 en la revista Physical Review Letters. Aunque mi predicción podía parecer fácil, mucha gente pensaba que el CERN, como institución, o el LHC, recibirían también el premio, o incluso que Philip Anderson, ya premio Nobel en 1977, o Tom Kibble, serían el tercer físico que acompañaría a Englert y Higgs, pero no acertaron. En este mi último podcast sobre el bosón de Higgs recordaré el papel de Anderson, y presentaré una curiosa idea, la “higgsogénesis” como explicación de la asimetría entre la materia y la antimateria.

Acceso gratuito a los artículos de F. Englert and R. Brout, “Broken Symmetry and the Mass of Gauge Vector Mesons,” Phys. Rev. Lett. 13, 321 (1964), y P. W. Higgs, “Broken Symmetries and the Masses of Gauge Bosons,” Phys. Rev. Lett. 13, 508 (1964). La historia de Anderson, contada por sus propias palabras, en “Interview with Dr. Philip Anderson,” by P. Chandra, P. Coleman and S. Sondhi, 1999.

Sobre la higgsogénesis recomiendo Eugenie Samuel Reich, “‘Higgsogenesis’ proposed to explain dark matter,” News, Nature, 4 October 2013 (traducción al español). Siendo los artículos técnicos Geraldine Servant, Sean Tulin, “Higgsogenesis,” (Accepted in PRL) arXiv:1304.3464 [hep-ph], y Sacha Davidson, Ricardo Gonzalez Felipe, H. Serodio, Joao P. Silva, “Baryogenesis through split Higgsogenesis,” arXiv:1307.6218 [hep-ph].

Sigue leyendo

Francis en Trending Ciencia: Las botellas de vino de Peter Higgs

Dibujo20130925 peter Higgs - blackboar - book - Higgs field - thetimes co uk

Mi tercer podcast de la segunda temporada de Trending Ciencia lo puedes escuchar siguiendo este enlace, trata sobre la historia de Peter Higgs y su relación con el campo de Higgs y el bosón de Higgs. Peter Higgs ha impartido muchas veces su charla “My life as a boson” (mi vida como un bosón), en la que cuenta su temprana historia de amor con el bosón de Higgs. Cuando reciba el Premio Nobel de Física de 2013 tendrá que volverla a contar muchas veces. Hoy que estoy en Donostia / San Sebastián, en el evento de divulgación Naukas Quantum, con motivo del centenario del átomo de Bohr, aprovecharé una entrada que ya apareció en mi blog como guión para este podcast, que espero que te guste.

Más información en Peter Higgs, “My Life as a Boson,” Talk presented at Kings College London, Nov. 24th, 2010 [PDF]. Peter Higgs, “My Life as a Boson: The Story of “The Higgs”,” Asia Pacific Physics Newsletter 1: 20-21, Sep. 2012. Professor Peter Higgs “My Life as a Boson,” Lecture, Swansea University, YouTube Video, 12th July 2012. Peter Higgs “My life as a boson,” Talk, VIMEO Video, 2009. Professor Peter Higgs, “My Life as a Boson,” CERN, Video, 2012-05-17.

Sigue leyendo

Sobre las teorías de Kaluza-Klein y la supergravedad en D=11

El verano es la época ideal para conversar. En los últimos días Amarashiki (@riemannium,TSOR), Alejandro Rivero (@arivero,web) y Kac-Moody (@1KacMoody1) han mantenido una interesante charla sobre la supergravedad (Sugra) y las teorías de Kaluza-Klein (KK) en Twitter sobre la cuestión “¿por qué se abandonó la línea de investigación en [teorías de Kaluza-Klein y Sugra] en 1985?,” que surgió al hilo de la entrada de Alejandro como invitado en mi blog (“Lo que pudo haber sido“). No soy experto en estas lides, pero yo creía que la razón estaba bastante clara: la primera revolución de la teoría de supercuerdas en el verano de 1984 y los problemas que antes de dicho verano se habían detectado en las teorías de supergravedad en 11 dimensiones relacionados con la quiralidad del modelo estándar y con sus divergencias ultravioletas (se trata de una teoría no renormalizable). Para los expertos en Kaluza-Klein y supergravedad cambiar de tópico de trabajo a la teoría de supercuerdas prometía muchos más éxitos. Por todo ello creo que fueron abandonadas estas ideas. Como sus problemas aún no han sido resueltos y se cree que no tienen una solución elegante, siguen abandonadas. Permíteme recordar la situación de las teorías de Kaluza-Klein y de supergravedad antes del verano de 1984 (me basaré, como no, en M.J. Duff, B.E.W. Nilsson, C.N. Pope, “Kaluza-Klein Supergravity,” Physics Reports 130: 1-142, 1986, y en M.J. Duff, “Supergravity, Kaluza-Klein and superstrings,” pp. 18-60 en 11th Intl. Conf. General Relativity and Gravitation, Cambridge UP, 1987).

Sigue leyendo

La historia de las cinco sigmas en física de partículas

Dibujo20130814 CDF diboson bump - fake signal after lhc analysis

El físico de origen español Luis W. Alvarez le sugirió en 1967 al físico Gerald (Gerry) R. Lynch que modificara su simulador de Montecarlo llamado GAME para generar histogramas que incluyeran falsos “picos” (bumps) de nuevas partículas (resonancias). Los resultados del nuevo programa fueron mostrados a físicos de partículas para que indicaran “a ojo de buen cubero” si había o no había “nuevas partículas” en dichos histogramas. Muchos físicos vieron nuevas partículas donde sólo había fluctuaciones estadísticas. Nos lo cuenta Luis W. Alvarez, “Recent developments in particle physics,” pp. 1-49 en “Evolution of Particle Physics,” Academic Press, 1970. Por cierto, esta entrada viene a colación por Tommaso Dorigo, “Demystifying The Five-Sigma Criterion,” AQDS, August 11th, 2013.

En aquella época se producían entre 10.000 y 20.000 histogramas al año, que eran explorados por unos 1000 físicos a la caza de nuevas partículas. Desde 1957, los nuevos descubrimientos eran publicados en el listado del Particle Data Group (PDG). La mayoría eran hadrones (entonces no se sabía que eran partículas compuestas de quarks, aunque se sospechaba), llamados resonancias. Muchos “descubrimientos” fueron refutados por otros experimentos, por lo que se decidió marcar todas las nuevas resonancias como “no confirmadas.” Había que decidir un criterio estadístico riguroso. Arthur H. Rosenfeld, uno de los padres de la iniciativa del PDG, en una conferencia sobre mesones celebrada en 1967 en Filadelfia, usó el resultado de Gerry Lynch para proponer un mínimo de tres desviaciones típicas (popularmente llamadas sigmas) para que una “nueva” partícula fuera incorporada al PDG. Nos lo cuenta en “The Particle Data Group: Growth and Operations-Eighteen Years of Particle Physics,” Annual Review of Nuclear Science 25: 555-598, 1975. Su artículo original de 1968 se titula “Are There Any Far-out Mesons or Baryons?,” como nos recuerda Tommaso Dorigo, “Demystifying The Five-Sigma Criterion – Part II,” AQDS, August 14th, 2013.

Tres sigmas no son suficientes, como han mostrado muchos casos. Uno de los más famosos en los que falló la regla de las tres sigmas fue el famoso descubrimiento del quark top en 1984 en el experimento UA1, liderado por Carlo Rubbia, en el colisionador SPS en el CERN. La teoría predecía 3,5 sucesos de dicho tipo y se observaron 12 sucesos (una fluctuación de tres sigmas). Pero al acumular más datos en UA1, la fluctuación cambió de signo y el descubrimiento fue desmentido pocos meses más tarde (de hecho, UA2 tampoco observó dicha fluctuación a favor). El quark top no tenía una masa de 40 ± 10 GeV/c², y gracias a UA1 y UA2 en 1990 ya se sabía que su masa era superior a 69 GeV, más allá de su capacidad de observación.

El número de cinco sigmas se estableció para el descubrimiento del quark top en 1995. En 1994 aparecieron las primeras evidencias del quark top a tres sigmas en CDF, pero el recuerdo de la historia de 1984 y que DZERO no lo hubiera observado, hizo que se recomendaran cinco sigmas para proclamar un descubrimiento. En 1995, tanto CDF como DZERO, los dos experimentos del Tevatrón, en el Fermilab, cerca de Chicago, EEUU, observaron el quark top con cinco sigmas. Hoy sabemos que tiene una masa de 173,3 ± 0,8 GeV/c² (de hecho, el LHC es una fábrica de quarks top).

Hoy en día, un descubrimiento en física de partículas requiere que dos experimentos diferentes observen el resultado con al menos cinco sigmas, que en el caso del bosón de Higgs fueron CMS y ATLAS del LHC en el CERN. Descubrimientos realizados por un único experimento, como el caso de las seis sigmas que alcanzaron los neutrinos superlumínicos del experimento OPERA en septiembre de 2011 son considerados por la mayoría de los físicos como falsas alarmas. Sólo cuando son ratificados de forma independiente por otro experimento se puede hablar en sentido estricto de un descubrimiento. Hoy sabemos que el error de OPERA era sistemático, no estadístico, debido a un fallo.

El incremento de la estadística (número de sucesos mostrados en los histogramas) produce fluctuaciones espurias a tres sigmas de forma continua y algunas pocas pueden alcanzar sin problemas las cinco sigmas; de hecho, con la ingente estadística de sucesos del LHC en la próxima década en algunas búsquedas de sucesos muy raros (como la presencia de partículas supersimétricas de gran masa) habrá falsos anuncios si no sube a entre siete y diez sigmas como cota indicativa de un descubrimiento. En la interpretación del número de sigmas de un resultado de física de partículas la clave es el consenso entre la comunidad.

Por cierto, lo he aclarado en varias ocasiones en este blog, pero quizás convenga recordar qué son las sigmas o desviaciones típicas en la significación estadística de un resultado, concepto que se utiliza en el campo del contraste de hipótesis. En este campo se estudia la probabilidad de que los datos observados en un experimento correspondan a algo nuevo (la hipótesis a contrastar) o sean resultado de una fluctuación estadística de lo ya conocido (la llamada hipótesis nula). La teoría predice para la hipótesis nula un valor medio (μ) y una desviación típica (σ). La diferencia entre valor medio observado y μ se puede cuantificar con un número de desviaciones típicas σ, es decir, con un número de sigmas. Estas son las famosas sigmas.

Por supuesto este análisis estadístico supone que las fuentes de error en la fluctuación son muchas e independientes, lo que permite aproximarla por una distribución gaussiana. En física de partículas hay errores estadísticos, que cumplen con esta condición, y errores sistemáticos, que no tienen por qué cumplirla, por ello el contraste de hipótesis utilizado es un poco más sofisticado, pero en esencia esta es la idea. Por tanto, el número de sigmas de una observación corresponde a probabilidad de que su origen sea la hipótesis nula; una sigma (desviación estándar) corresponde a una probabilidad del 16%, tres sigmas al 0,17%, y las “mágicas” cinco sigmas a una probabilidad del 0,000027%.

PS (17 ago 2013): Como Eclectikus en los comentarios, recomiendo leer a Lubos Motl, “In defense of five standard deviations,” TRF, Aug 14, 2013.

PS (19 ago 2013): Como he enlazado las dos primeras entradas de Tommaso Dorigo, también quiero enlazar las dos siguientes “Demystifying The Five-Sigma Criterion – Part III,” AQDS, Aug 17th 2013, y “Demystifying The Five-Sigma Criterion – Part IV And Summary,” AQDS, Aug 19th 2013. Esta última incluye la figura que abre esta entrada en su última versión obtenida por CDF, que ya no muestra el “falso” pico en azul tras analizar 8,9 /fb de colisiones en el Tevatrón (en lugar de 4,9 /fb) y mejorar la estimación de los sucesos de fondo (reducir los errores sistemáticos en la estimación teórica). Me permito copiarla aquí, sin más detalles, como coda final.

Dibujo201300619 cdf run ii - preliminary result por diboson fake bump

Hazlo y publícalo ya, aunque se pueda hacer mejor, no importa, pero publícalo ya

dibujo20130624-zhang-bounded-gaps-between-primes

En la ciencia actual el prestigio está asociado al impacto y éste al número de citas recibidas. Hacer algo importante sin molestarse en afinar los detalles es mucho mejor, pues los revisores no pondrán inconvenientes y el trabajo recibirá gran número de citas de quienes refinen los detalles. Yitang (Tom) Zhang (de la Universidad de New Hampshire) ha demostrado que existen infinitos pares de primos separados menos de una distancia de 70.000.000; es obvio que no es lo mismo que demostrar la conjetura de los primos gemelos, pero no importa. Lo importante es saber si la constante 70.000.000 puede ser reducida usando las técnicas de Zhang y por supuesto que puede serlo, y mucho. ¿Tiene que molestarse Zhang en hacerlo? No, todo lo contrario, para ser una persona de éxito tiene que dejar que los demás lo hagan por él, pues ello incrementará su “índice de impacto” (quiero decir, su número de citas) y cuanto antes publique él su resultado mucho mejor. La demora cercena el éxito de los demasiado egoístas que ignoran como funciona la ciencia actual.

La página web “Bounded gaps between primes,” PolyMath, [última edición hoy] 24 jun 2013, nos indica que los 70.000.000 del 14 de mayo obtenidos por Zhang bajaron a 4.801.744 el 4 de junio, a 248.898 el 14 de junio, y, poco a poco, hasta hoy, 24 de junio, hasta sólo 10.206, un número que seguirá bajando durante meses y años. Por supuesto, todo el mundo sabe que el número nunca bajará hasta 2 utilizando las técnicas de Zhang, son demasiado “torpes,” pero la cuestión no es hasta dónde bajará este número, que bajar más, bajará más, si no el gran número de citas que está recibiendo el trabajo de Zhang por ser un trabajo inacabado del tipo “hazlo y pubícalo ya, y no te molestes en mejorarlo que otros lo harán más rápido y mejor que tú.” En ciencia, siempre se citará al padre de la idea.

Cuento esto porque muchos de los lectores de este blog creen que han descubierto algo “grande” y creen que si lo publican algún “listo” se lo robará. Así no funciona la ciencia y lo que se publica por la vía estándar queda para siempre. Los que ocultan sus supuestos descubrimientos no hacen ciencia, hacen paraciencia. Y la paraciencia siempre queda en el olvido.