El cañón de vórtices, un experimento fácil de ejecutar y siempre espectacular

El cañón de vórtices es un experimento muy popular en las olimpiadas de ciencia en EE.UU. y este vídeo nos muestra que además es muy divertido. La primera vez que lo ví fue en Karen Bouffard, “The Vortex Cannon,” The Physics Teacher 38: 18,2000, donde se explicaba cómo fabricarlo. Se puede usar humo, para ver los vórtices toroidales, o incluso no usarlo y que parezca que actúa por efecto de la magia. Con un poco de práctica es fácil generar vórtices con suficiente energía para recorrer más de 10 metros de distancia y apagar velas, romper una torre de vasos de plástico (como en el vídeo), o incluso simular un fantasma de aire que acaricia la cara de una persona. La potencia del cañón de vórtices depende del volumen de aire de la cavidad que lo produce, por lo que se recomienda usar una gran caja de cartón (en la que se cortará un agujero circular de unos ~15 cm de diámetro). Más información en Elisha Huggins, “Smoke Ring Physics,” The Physics Teacher 49: 488-491, November 2011. El vídeo lo he visto en Alvy, “El asombroso y original cañón de aire que dispara vórtices,” microsiervos, 22 marzo 2012.

Esta imagen muestra el campo magnético inducido por la corriente eléctrica que pasa por un hilo. Un vórtice en un fluido se produce cuando el campo de velocidad (v) del fluido tiene una distribución similar. La matemática de este problema fue introducida por Herman von Helmholtz en 1858, la llamada teoría de la línea vorticial (“vortex line theory”).  El campo de velocidad depende inversamente de la distancia a la línea central (1/r) y la constante de proporcionalidad se denomina circulación (κ), que corresponde a una integral de línea en una curva cerrada centrada en la línea central. Helmholtz fue capaz de derivar estas ecuaciones para un vórtice de fluido a partir de las leyes de Newton aplicadas al fluido.

El teorema de Helmholtz implica dos consecuencias. Por un lado, los vórtices no pueden nacer o acabar en un fluido de densidad constante, es necesario que haya una superficie (en el caso de la caja es la pared); en el caso de un tornado estas superficies son el suelo y las nubes. Y por otro lado, Helmholtz descubrió que la generación de los vórtices requiere una fuerza potencial (fuerzas de presión o fuerzas gravitatorias en el caso de un fluido); las fuerzas no potenciales (como la viscosidad) no pueden producir vórtices. Ambas propiedades permiten explicar la gran robustez de los vórtices y por qué son capaces de recorrer grandes distancias.

Este vídeo japonés muestra el cañón de vórtices con caja de cartón más grande del mundo… ¡Cosas de japoneses!

La colisión frontal de dos vórtices de diferente color también es muy espectacular, aunque es mejor verla uzando líquidos, como en este vídeo.

PS (26 mar. 2012): El maravilloso mundo de los solitones tipo vórtice y sus aplicaciones en la teoría de los quarks (vídeo IOP protagonizado por David Tong, Universidad de Cambdrige). Visto en Sean Carroll, “Baths and Quarks,” Cosmic Variance, March 26th, 2012 (vía TwitterJ.F.G.H./Х.Ф.Г.Э. ‏ @jfghlynx).

Anuncios

8 pensamientos en “El cañón de vórtices, un experimento fácil de ejecutar y siempre espectacular

  1. Alucinante ver a delfines jugar con vórtices creados por ellos mismos…

  2. Estimado Francis: Me ha resultado muy reconfortante su artículo sobre el vórtice, pero más que por su descripción del fenómeno que se ve en el video, es por la referencia que hace al profesor Herman von Helmholtz, que bajo mi opinión es unos de los hombres más sobresalientes del siglo XIX, que estudia el fenómenos de vórtice y llega a determinar con formulas matemáticas la estabilidad y estructura de los remolinos potenciales, que es equivalente a un vórtice, pero ahora el fluido que él considera es un fluido ideal, es decir sin rozamiento.
    El demuestra, que el hilo del remolino está formado por líneas, constituidas por partículas del fluido en rotación cuyos ejes son las tangentes en cada punto a las líneas. Establece, con la ecuación de Lagrange, la de continuidad (que expresa que la masa se conserva) y la de ecuación del estado del fluido, obtiene el teorema que hoy día se denomina de Helmholzt, que dice “cuando un fluido, se mueve sometido a fuerzas que derivan de un potencial, el momento del movimiento, del remolino de una superficie cualquiera permanece constante”. Se puede expresar diciendo: “la circulación del vector v, velocidad a lo largo de una curva cerrada S, que se mueve con el fluido permanece constante”. Deduciéndose de él, entre atrás, varias consecuencias, 1º: las partículas del fluido que constituyen una línea de remolino conservan esta propiedad indefinidamente. 2º: La masa liquida que en un momento llena un tubo de remolino conserva esta propiedad durante el movimiento y su momento permanece constante. 3º: En un fluido ideal, en el movimiento del remolino, no existen perdida de energía. 4º: La circulación alrededor de un hilo de remolino es invariable a lo largo de toda la longitud del hilo, por lo que los hilos solamente pueden empezar y terminar en los límites del fluido o retroceder sobre si mismo formando una curva cerrada.
    Por otra parte, un remolino con un hilo de forma cualquiera que tenga un momento de una intensidad J definida, ejerce, en su campo potencial, fuerzas que a las partículas del medio les obliga a desplazarse con una velocidad dada por una ecuación similar a la formulada por Biot y Savart, por un elemento diferencial de corriente eléctrica, para campos magnéticos en un punto.
    Al demostrar que el Electromagnetismo es una rama de la Mecánica de Fluido, es fácil la concepción de la Mecánica Cuántica a través de la de Fluidos y con ella la coincidencia de interpretación de los fenómenos físicos, para esto solamente ha sido necesario considerar que el flujo magnético, está formado por un fluido ideal.
    Si se considerase en vez de vórtice un remolino potencial, el fenómeno expresado en el video, sería equivalente, pero el remolino no tiene porque desintegrarse, pudiendo intercambiar energía cinética en el choque y modificar su estructura.

    • ¿quién ha demostrado donde que el Electromagnetismo es una rama de la Mecánica de Fluidos?

      • Hombre pues se aplican muchas herramientas matemáticas vectoriales comunes: rotacionales, gradientes, flujos, densidades de flujo… etc. Como analogís son muy buenos para explicarse mutuamente… pero solo como analogía, hay que tener cuidado de hasta donde extendemos el significado físico de las cosas. Su comportamiento matemático bajo ciertas condiciones es similar, pero hasta ahí.

  3. EL ELECTROMAGNETISMO COMO RAMA DE LA MECÁNICA DE FLUIDOS POTENCIALES.
    Lo tengo demostrado en mi libro “Teoría del Cladín” en colaboración con J.de Luis, si te interesa y Francis lo permite te remito la demostración a través de un comentario en este blog. Claudio

  4. Estas son las cosas sencillas que me hacen recordar por que empecé a estudiar física.

  5. Increible! Con esto se demuestra que estamos rodeados de muchos fenómenos físicos que hasta el hombre puede recrear. Ojalá y nuestra actual juventud sepa apreciar estos trabajos de investigación que pudieran ser de mucha utilidad para el avance científico.
    Envío saludos y muchas felicitaciones por estos trabajos. Uno nunca deja de aprendergracias a ustedes.

Los comentarios están cerrados.