Algunos artículos de Física en Nature Communications

Dibujo20131108 Setup and thermometry of a noise-driven cantilever - ncomms3624-f1

Una barra en voladizo (fija por un extremo) es el prototipo de los sistemas micromecánicos para la medida ultrasensible de masas y de fuerzas en la nanoescala. Este sistema presenta una resonancia estocástica que hace que su movimiento oscilatorio bifurque entre dos estados estables en respuesta a un ruido blanco (biestabilidad debida a una amplificación paramétrica). Este fenómeno permite usar este sistema micromecánico para medir señales muy débiles incluso en un medio ambiente muy ruidoso.

Dibujo20131108 Bistable frequency response lines of the cantilever measured at room temperature - nature commEl artículo técnico, para los interesados en los detalles, es Warner J. Venstra, Hidde J. R. Westra, Herre S. J. van der Zant, “Stochastic switching of cantilever motion,” Nature Communications 4: 2624, 31 Oct 2013 (ver también Warner J. Venstra et al., “Mechanical stiffening, bistability, and bit operations in a microcantilever,” arXiv:1011.1309 [cond-mat.mes-hall]).

Sigue leyendo

La resonancia estocástica en acción: Una molécula de hidrógeno controlando un oscilador micromecánico

La resonancia estocástica es un fenómeno muy curioso descubierto en 1981. Un oscilador forzado por una señal periódica y acoplado a una fuente de ruido se pone a oscilar al ritmo del ruido (si forzamiento y ruido se ajustan de forma adecuada). La resonancia estocástica actúa como un proceso de amplificación de la transferencia de energía entre un sistema “pequeño” ruidoso y un sistema “grande” oscilatorio (que recibe energía externa del forzamiento). Una cuestión interesante es cuán pequeño puede ser “pequeño” y cuán grande puede ser “grande.” José Ignacio Pascual (CIC nanoGUNE / Ikerbasque / Freie Univ. Berlin) y varios colegas demuestran en Science que el fenómeno puede ocurrir para algo tan pequeño como una molécula de hidrógeno (H2) y algo tan grande como un oscilador micromecánico de varios miligramos de peso. La molécula de hidrógeno se encuentra sobre una superficie de cobre Cu(111) y el oscilador es la punta metálica de un microscopio de fuerza atómica a muy baja temperatura (5 K) y condiciones de ultravacío. El estado de la molécula hidrógeno fluctúa de forma aleatoria gracias al salto por efecto túnel de electrones entre sus niveles atómicos. Este desplazamiento de electrones de decenas de picómetros, con energías de decenas de milielectronvoltios, ejerce una fuerza de cientos de piconewtons en la punta metálica. Lo sorprendente es que la punta, gracias a la “magia” de la resonancia estocástica, se pone a oscilar al ritmo de las transiciones electrónicas de la molécula de hidrógeno. En cierto sentido, la molécula de hidrógeno actúa como un conmutador molecular que activa y desactiva la oscilación de la punta metálica. Un símil en peso sería como una persona que pegara saltos aleatorios y a cuyo ritmo se pusiera a oscilar todo el monte Everest. El artículo técnico es Christian Lotze, Martina Corso, Katharina J. Franke, Felix von Oppen, Jose Ignacio Pascual, “Driving a Macroscopic Oscillator with the Stochastic Motion of a Hydrogen Molecule,” Science 338: 779-782, 9 November 2012. Más información en CIC Nagune, traducido en Tendencias21.net, y en “Ruido estadístico y movimiento ordenado,” IyC nov. 2012.

Un punto clave que hay que destacar es que la molécula de hidrógeno controla el movimiento, actuando como un interruptor de encendido/apagado, pero no realiza el trabajo mecánico que resulta en las oscilaciones de la punta metálica del microscopio (cuyo movimiento recibe energía de forma independiente). En cierto sentido es como un transistor que actúa como conmutador. Por tanto, no se viola ningún principio de la termodinámica. Alguien podría pensar en acoplar un baño térmico a la molécula de hidrógeno para lograr la extracción de energía (molecular) gratis de las oscilaciones de la balanza, pero un análisis matemático cuidadoso muestra que el interruptor molecular demostrado por Pascual y sus colegas no viola el segundo principio de la termodinámica (la entropía siempre crece) y si se extrae de alguna forma trabajo de la molécula de hidrógeno, necesariamente debe ser aportado por una fuente exterior (el baño térmico).

Hay muchas aplicaciones de la resonancia estocástica en sistemas que procesan información en los que cierto nivel de ruido ayuda a discriminar la señal respecto a dicho ruido, tanto en biología, climatología, química, física, ingeniería, etc. Ver por ejemplo “Una lógica a la que no le molesta el ruido,” IyC, abr. 2010, “Las virtudes del ruido de fondo,” IyC, oct. 1995, o “Ruido vital,” Encuentros, UMA.

Una pulga capaz de provocar un terremoto en el Everest

 

Titular provocativo, pero elocuente. Así describen los autores su logro. Demuestran como un cristal con 1020 átomos se pone a vibrar cuando lo atraviesa por efecto túnel un único electrón. Para estudiar un resonador micromecánico se utilizan electrones o fotones, que afectan a sus vibraciones. El efecto suele ser pequeño y puede ser despreciado, salvo en algunos sistemas, como los nanotubos de carbono. Stettenheim et al. publican en Nature un ejemplo aún más sorprendente. Un objeto (micro)mecánico macroscópico vibra al son del ruido cuántico, las fluctuaciones estadísticas (por efecto túnel) de sus electrones. Han utilizado como oscilador micromecánico un contacto puntual cuántico (quantum point contact o QPC) construido con arseniuro de galio (GaAs). Sin ruido cuántico el oscilador no debería vibrar, pero por un efecto similar al movimiento browniano, en el que un grano de polen en agua se mueve por las fluctuaciones estadísticas de las moléculas que le golpean, el oscilador se resuena al ritmo de las fluctuaciones cuánticas de los electrones de conducción que lo atraviesan. Un ejemplo dramático  de la interacción entre el mundo cuántico y el clásico. El artículo técnico es Joel Stettenheim et al., “A macroscopic mechanical resonator driven by mesoscopic electrical back-action,” Nature 466: 86–90, 01 July 2010.