
La fusión aneutrónica produce neutrones de alta energía, pero muchos menos que la fusión convencional. La colisión de protones con núcleos de boro 11 produce sobre todo radiación alfa (núcleos de helio) de alta energía en lugar de neutrones. A veces se afirma que la fusión aneutrónica está «limpia» de radiación ionizante, pero en realidad lo que ocurre es que contener la radiación alfa requiere un blindaje más delgado. No todo son ventajas. La fusión p11B requiere alcanzar una temperatura del plasma mucho más alta que la fusión D-T (deuterio-tritio), lo que impide su uso en reactores de fusión por confinamiento magnético. Por fortuna, la fusión pulsada en reactores por confinamiento inercial no parece imposible, en principio, siempre que el plasma pB esté fuera del equilibrio. Christine Labaune (LULI, Ecole Polytechnique, CNRS, Francia) y sus colegas han publicado en Nature Communications un nuevo avance en esta tecnología basado en el uso de dos láseres diferentes. Un láser de picosegundos calienta el plasma de protones durante unos picosegundos y lo hace colisionar con un plasma de núcleos de boro previamente calentado por un láser de nanosegundos. Han observado la emisión de radiación alfa, sin presencia apreciable de neutrones de alta energía. Un gran éxito, aunque sólo un pequeño paso hacia la fusión aneutrónica como una realidad comercial. Sobre todo porque la escalabilidad del nuevo sistema es muy difícil y el breakeven puede tardar décadas en ser alcanzado. Nos lo cuenta Ron Cowen, «Two-laser boron fusion lights the way to radiation-free energy,» News, Nature, 8 Oct 2013; el artículo técnico es C. Labaune et al., «Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma,» Nature Communications 4: 2506, 8 Oct 2013 (arXiv:1310.2002 [physics.plasm-ph]).
Sigue leyendo →