Algunos artículos de Física en Nature Communications

Dibujo20131108 Setup and thermometry of a noise-driven cantilever - ncomms3624-f1

Una barra en voladizo (fija por un extremo) es el prototipo de los sistemas micromecánicos para la medida ultrasensible de masas y de fuerzas en la nanoescala. Este sistema presenta una resonancia estocástica que hace que su movimiento oscilatorio bifurque entre dos estados estables en respuesta a un ruido blanco (biestabilidad debida a una amplificación paramétrica). Este fenómeno permite usar este sistema micromecánico para medir señales muy débiles incluso en un medio ambiente muy ruidoso.

Dibujo20131108 Bistable frequency response lines of the cantilever measured at room temperature - nature commEl artículo técnico, para los interesados en los detalles, es Warner J. Venstra, Hidde J. R. Westra, Herre S. J. van der Zant, “Stochastic switching of cantilever motion,” Nature Communications 4: 2624, 31 Oct 2013 (ver también Warner J. Venstra et al., “Mechanical stiffening, bistability, and bit operations in a microcantilever,” arXiv:1011.1309 [cond-mat.mes-hall]).

Sigue leyendo

Nuevo avance en la fusión aneutrónica protón-boro

Dibujo20131009 protons-boron nuclei - two laser facility - Nature Comms

La fusión aneutrónica produce neutrones de alta energía, pero muchos menos que la fusión convencional. La colisión de protones con núcleos de boro 11 produce sobre todo radiación alfa (núcleos de helio) de alta energía en lugar de neutrones. A veces se afirma que la fusión aneutrónica está “limpia” de radiación ionizante, pero en realidad lo que ocurre es que contener la radiación alfa requiere un blindaje más delgado. No todo son ventajas. La fusión p11B requiere alcanzar una temperatura del plasma mucho más alta que la fusión D-T (deuterio-tritio), lo que impide su uso en reactores de fusión por confinamiento magnético. Por fortuna, la fusión pulsada en reactores por confinamiento inercial no parece imposible, en principio, siempre que el plasma pB esté fuera del equilibrio. Christine Labaune (LULI, Ecole Polytechnique, CNRS, Francia) y sus colegas han publicado en Nature Communications un nuevo avance en esta tecnología basado en el uso de dos láseres diferentes. Un láser de picosegundos calienta el plasma de protones durante unos picosegundos y lo hace colisionar con un plasma de núcleos de boro previamente calentado por un láser de nanosegundos. Han observado la emisión de radiación alfa, sin presencia apreciable de neutrones de alta energía. Un gran éxito, aunque sólo un pequeño paso hacia la fusión aneutrónica como una realidad comercial. Sobre todo porque la escalabilidad del nuevo sistema es muy difícil y el breakeven puede tardar décadas en ser alcanzado. Nos lo cuenta Ron Cowen, “Two-laser boron fusion lights the way to radiation-free energy,” News, Nature, 8 Oct 2013; el artículo técnico es C. Labaune et al., “Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma,” Nature Communications 4: 2506, 8 Oct 2013 (arXiv:1310.2002 [physics.plasm-ph]).

Sigue leyendo