Fabrican el espejo perfecto utilizando un cristal fotónico

Dibujo20130710 perfect mirror with photonic crystal

Se publica en Nature la fabricación del primer espejo perfecto gracias a un cristal fotónico de nitruro de silicio sobre un sustrato de dióxido de silicio, un espejo que refleja toda la luz incidente, sin absorber nada de luz; la luz debe incidir con un ángulo concreto desde un líquido con el mismo índice de refracción que el dióxido de silicio (como muestra la figura). Un cristal fotónico es un material microestructurado que presenta una serie de pequeños agujeros con un tamaño menor que la longitud de onda de la luz incidente. El cristal fotónico actúa como un sólido y presenta una serie de bandas prohibidas para la luz (como un sólido las presenta para los electrones). Los cristales fotónicos permiten nuevos modos de guiado de la luz, permitiendo que la luz se curve en una esquina sin pérdidas y otros fenómenos similares. ¿Por qué funciona el cristal fotónico como espejo perfecto? Según los autores aparece un fenómeno similar a la interferencia destructiva que se observa en algunos sistemas cuánticos; el acoplo entre los modos evanescentes a ambos lados del cristal fotónico presenta una resonancia que hace que se desvanezcan. En física cuántica a este fenómeno se le llamada degeneración accidental y fue propuesto en 1929 por John von Neumann y Eugene Wigner; la ecuación de Schrödinger permite que en un pozo de potencial haya estados de electrones atrapados con la misma energía que un electrón libre (infinitamente alejado del potencial). ¿Para qué puede servir? Quizás para atrapar luz dentro de una cavidad óptica con espejos perfectos a ambos lados. Nos lo cuenta A. Douglas Stone, “Optical physics: Trapping the light fantastic,” Nature 499: 159–160, 11 Jul 2013, quien se hace eco del artículo técnico de Chia Wei Hsu et al., “Observation of trapped light within the radiation continuum,” Nature 499: 188–191, 11 Jul 2013. Por cierto, uno de los autores, John D. Joannopoulos (MIT) es firme candidato al Premio Nobel de Física por los cristales fotónicos desde hace más de una década.

Sigue leyendo

Anuncios

Los conos en la retina de los peces elefante forman un cristal fotónico que les permite ver colores a través de aguas turbias

Los cristales fotónicos son materiales ópticos estructurados que repiten cierto patrón en una escala nanométrica, por debajo de la longitud de onda de luz. En la Naturaleza son muy comunes (por ejemplo, en los ópalos o en las alas de las mariposas). Se publica hoy en Science que los conos (fotorreceptores) de la retina de los peces elefante (Gnathonemus petersii) se agrupan formando macrofotorreceptores de tipo cristal fotónico. Gracias a ello se incrementa su sensibilidad para detectar estímulos coloreados en un ambiente muy ruidoso, permitiéndoles ver colores a través de las aguas turbias del hábitat en el que viven. El artículo técnico es Moritz Kreysing et al., “Photonic Crystal Light Collectors in Fish Retina Improve Vision in Turbid Water,” Science 336: 1700-1703, 29 June 2012.

Este vídeo muestra una reconstrucción tridimensional de cómo 6 conos (células fotorreceptoras) se agrupan formando un macrorreceptor hexagonal con forma de copa o jarrón. Las paredes de esta copa están formadas por cristales de guanina y melanina. Os recuerdo que en la retina hay dos tipos de fotorreceptores, los bastones (para ver en blanco y negro) y los conos (para ver en color). Los bastones permiten ver en un ambiente muy oscuro, pero los conos son “ciegos” en dicho ambiente. Por ello de noche no podemos distinguir bien los colores y vemos como en blanco y negro. Los macrorreceptores de la retina de los peces elefante permiten que sus conos sean capaces de ver colores en un ambiente con una luz muy tenue, como el agua turbia. Ya se sabía que algunos peces podían ver colores en estas circunstancias, pero no se conocía la razón última.

El nuevo artículo en Science propone una solución muy razonable a este problema, que se ha comprobado con simulaciones por ordenador mediante el método de diferencias finitas en el dominio del tiempo (FDTD). La parte interior de las “copas” formadas por los sesis conos, gracias a la presencia de cristales de guanina y melanina, actúa como un espejo parabólico que amplifica la luz en ciertas regiones donde se encuentran fotopigmentos para los colores verde (536 nm) y rojo (615 nm). Gracias a ello, los peces Gnathonemus son capaces de observar colores rojos en aguas muy turbias. La Naturaleza, gracias a la evolución por selección natural, encuentra soluciones sorprendentes que ofrecen muchas oportunidades a los ingenieros especializados en biomimética.

Láseres de agujeros negros, radiación de Hawking del universo y energía oscura (o a ver cómo le damos un Premio Nobel a Stephen Hawking)

dibujo24mar2008hawking.jpg

Stephen Hawking con su primera (arriba) y su segunda (abajo) esposas.

Volvemos a la carga… tras la Semana Santa con un comentario sobre Stephen Hawking, genio donde los haya, quien todavía no ha recibido el Nobel, pero a quien mucha gente “parece que quiere” dárselo. El descubrimiento experimental de la radiación de Hawking, si le pilla vivo (tiene 66 años), merecerá dicho galardón, sin lugar a dudas.

Vivir con Stephen no debe ser fácil. Su primera mujer Jane (Hawking) casi se suicida, aunque le sacó buen rendimiento económico a su libro “Travelling to Infinity: My Life with Stephen“. Su hija Lucy (Hawking) es alcohólica. Y su antigua enfermera, Elaine Mason, de la que se divorció en 2006 fue acusada múltiples veces de maltratar a una mente tan prodigiosa. Lo dicho, vivir con Stephen no debe ser fácil. Pero volvamos al grano.

Unos quieren darle el Nobel a Hawking encontrando un análogo óptico del horizonte de sucesos de un agujero negro y observando la radiación de Hawking en una fibra óptica no lineal: Thomas G. Philbin, Chris Kuklewicz, Scott Robertson, Stephen Hill, Friedrich König, Ulf Leonhardt, “Fiber-Optical Analog of the Event Horizon,” Science, Vol. 319. no. 5868, pp. 1367 – 1370, 7 March 2008. La analogía entre un agujero negro para la luz y una catarata en un río para una canoa, muy poco conseguida por cierto, lleva a los autores a afirmar que un horizonte se forma cuando la velocidad local en un medio excede a la velocidad “natural” de las ondas en dicho medio, con lo que proponen la demostración de la existencia de un horizonte de sucesos “artificial” en el frente de onda de pulsos ultracortos que se propagan en fibras ópticas de cristal fotónico, también llamada microestructuradas, “fibras con agujeros” en plan llano. Por supuesto, sólo observan el fenómeno óptico a nivel clásico, en concreto, el corrimiento hacia el azul de la luza en el “horizonte” (frente de onda). El artículo es curioso y proponen esta técnica como posible modelo experimental, para en un futuro, poder detectar la radiación de Hawking, un fenómeno claramente cuántico. Las tecnologías de óptica cuántica están bastante avanzadas, pero a mí “me huele” que tardarán bastante en observar la radiación de Hawking, entre otras cosas porque lo que proponen es un experimento “ya realizado muchas veces” (aunque nadie buscó ver efectos cuánticos) y hasta ahora nadie ha visto efectos cuánticos (quizás porque nadie los ha buscado).

dibujo24mar2008fibrauno.jpg

En la figura de arriba se observa cómo se propaga un pulso (amarillo) en una fibra óptica no lineal (A) que recibe radiación infrarroja (flecha roja) que pretende “atravesarlo”. En el diagrama (B), donde se muestra un sistema de referencia que se mueve junto al pulso, podemos observar dos horizontes de sucesos clásicos (los dos puntos negros). El pulso infrarrojo de prueba es ralentizado hasta que su velocidad de grupo alcanza la del pulso no lineal (amarillo). El primer punto (trasero o por la izquierda) corresponde al horizonte de un “agujero blanco” y el segundo punto (delantero o por la derecha) al de un “agujero negro”. La luz infrarroja de prueba es corrida hacia el azul en el “agujero blanco” debido a la dispersión óptica en dicho horizonte. En la figura (C) se muestra el que sería el resultado del experimento cuántico “interesante”, la “teórica” observación de la radiación de Hawking. Cuando no incide pulso infrarrojo, el horizonte de sucesos podría emitir pares de fotones “cuánticos” correspondientes a ondas de frecuencias positivas en la parte exterior del horizonte acopladas a ondas de frecuencia negativa al otro lado del horizonte. Este efecto se vería reforzado por la pendiente creciente de la onda de choque que se produce en el pulso no lineal. La radiación de Hawking, de hecho, incrementaría la propia luminosidad del pulso no lineal. Por supuesto los investigadores sólo han observado el fenómeno clásico (figuras A y B), el corrimiento al azul de la luz de prueba que incide sobre el pulso no lineal. Los resultados de la figura C son solamente teóricos y sujetos a que Hawking “tenga razón”.

Una cosa interesante de este artículo en Science, que ya parece típico en muchos artículos de esta revista, es la enorme diferencia de longitud entre el artículo publicado en la revista (solamente de 3 páginas, 4 según la numeración pero la primera y la última sólo son media página) y la longitud del Material Online Suplementario de, nada más y nada menos, 45 páginas y 61 referencias (el de la revista sólo tiene 21, mal contadas, pues algunas son notas al margen). ¡¡ Increíble !! Si te lees el artículo de la revista, “prácticamente no te enteras de nada”. Necesitas leer el suplemento… cosas de revistas como Science y Nature, que quieren ahorrar páginas y se están aprovechando de la Internet. ¿Pero aparecerán las citas en el suplemento en los análisis de citas de servidores como Scopus o ISI Web of Science? Ya lo veremos. Si no aparecen, están haciendo un flaco favor a los autores de los correspondientes artículos.

Seamos positivos. Si se descubre la radiación de Hawking en fibra óptica tendría gran número de aplicaciones tecnológicas. Las ya bautizadas como “láseres de agujeros negros”, por ejemplo, en U. Leonhardt and T.G. Philbin, “Black Hole Lasers Revisited,” ArXiv preprint, March 5, 2008, ya que la existencia de dos horizontes de sucesos en pulsos no lineales permite un fenómeno de dispersión “superlumínica” (quizás sería mejor decir “supersónica” ya que no violan la relatividad especial de Einstein) que lleva a la amplificación de la producción de partículas en el caso de bosones (como los fotones). Por supuesto, los cálculos analíticos de este efecto son extremadamente difíciles, por lo que sólo hay cierta evidencia numérica, que puede ser discutible actualmente.

Pero sigamos con Hawking. Otros quieren darle el Nobel estudiando la posiblidad de medir la radiación de Hawking a nivel cosmológico (en agujeros negros sería una medida astrofísica), utilizando el Universo en su totalidad. El artículo de Jae-Weon Lee, Hyeong-Chan Kim, Jungjai Lee, “Is dark energy from cosmic Hawking radiation?,” ArXiv preprint, March  13, 2008, sugiere que la energía oscura (el 72% del Universo) en realidad es la radiación de Hawking de un horizonte de sucesos cósmico. Los cálculos teóricos indicad que, aunque la temperatura de este tipo de radiación de Hawking es extremadamente pequeña, es sorprendentemente de la magnitud apropiada para explicar la energía oscura y además cumple una ecuación de estado compatible con los datos cosmológicos observados, gracias a la enorme entropía que está contenida en el área de este horizonte de sucesos cosmológico. Dos grandes problemas resueltos de un “plumazo” ¡¡ increíble !! Eso sí, tanto el horizonte de sucesos cosmológico como la entropía de la radiación deben cumplir un principio holográfico con objeto de que haya coincidiencia con los parámetros cosmológicos observados y la “holografía cósmica” todavía no forma parte de la corriente estándar en física de partículas y cosmología. Aún así, el modelo es simple y explica varios misterios de la energía oscura (que los tiene y muchos, aunque algunos piensen lo mismo que pensaban del “éter” en el s. XIX, que se resolverán “pronto”) de forma consistente.

¿Se observará la radiación de Hawking? ¿Se observará antes de que Hawking muera? No lo sabemos, pero el tiempo dirá.