Cuando el fin justifica los medios

Dibujo20130518 Diversity of transcript isoforms

El dogma central de la biología molecular, propuesto por Francis Crick en 1958, reza que todo gen (codificante) se transcribe en ARN mensajero que se traduce en una proteína. Hoy sabemos que las cosas nunca fueron tan sencillas. Un estudio del ADN de la levadura de la cerveza (S. cerevisiae) ha mostrado que, aunque contiene unos 6000 genes codificantes de proteínas, produce 1,88 millones de transcritos de ARN. Estas moléculas de ARN se llaman isoformas de transcripción (TIF por sus siglas en inglés) y tienen diferentes secuencias de inicio (5′) y final (3′). ¿Cuál es su función biológica? Lo más fácil es decir que su papel es regular la expresión de otros genes, pero esta función ha sido demostrado sólo en unos cientos de casos. La mayoría de los TIF podrían no tener ninguna función biológica, siendo un subproducto irrelevante de la maquinaria de transcripción. ¿Podrían tener algún papel en la evolución? Como es obvio, el contenido de TIF en un momento dado de una célula dentro de una población la diferencia de todas las demás y quizás podría proporcionarle la oportunidad de estar mejor adaptada a cambios en su entorno. Quizás esta gran diversidad de ARN transcritos sea una de las razones por la que es difícil matar a todas las células cancerosas de un tumor. Así finaliza su News & Views, cuyo titulo he copiado, B. Franklin Pugh, “Molecular biology: The ends justify the means,” Nature 497: 48–49, 02 May 2013, quien se hace eco del artículo técnico de Vicent Pelechano, Wu Wei and Lars M. Steinmetz, “Extensive transcriptional heterogeneity revealed by isoform profiling,” Nature 497: 127–131, 02 May 2013.

Sigue leyendo

Nuevos avances en la hipótesis del mundo de ARN como origen de la vida

La hipótesis del Mundo de ARN afirma que en las primeras etapas de la aparición de la vida en la Tierra, moléculas de ARN actuaron tanto como moléculas que almacenan la información genética como enzimas (ribozimas). La hipótesis requiere encontrar moléculas de ARN capaces de catalizar la replicación de otras moléculas de ARN. Shechner et al. han evolucionado in vitro, mediante técnicas de selección artificial, moléculas de ARN cuya estructura tridimensional es homóloga a la de proteínas capaces de replicar el ARN, incluyendo sus sitios acivos. Estas ribozimas que actúan como polimerasas bien podrían haber sido similares a las que dominaron el Mundo de ARN. Las ribozimas que actúan como ligasas y polimerasas son conocidas con anterioridad a este trabajo, pero los nuevos resultados sobre la estructura tridimensional completa de una de las ribozimas más interesantes complementa de forma ideal trabajos anteriores que sólo lograron obtener la estructura 3D del sitio activo de este tipo de ribozimas. Un fuerte impulso a la validez de la hipótesis del origen de la vida en un Mundo de ARN. El artículo técnico es David M. Shechner, Robert A. Grant, Sarah C. Bagby, Yelena Koldobskaya, Joseph A. Piccirilli, David P. Bartel, “Crystal Structure of the Catalytic Core of an RNA-Polymerase Ribozyme,” Science 326: 1271-1275, 27 November 2009, que complementa a la perfección trabajo previos como el de Michael P. Robertson, William G. Scott, “The Structural Basis of Ribozyme-Catalyzed RNA Assembly,” Science 315: 1549-1553, 16 March 2007, del que ya se hicieron eco muchos foros, como Patricia González, “La estructura de los orígenes,” Astroseti, 23-04-2007, cuya lectura desde aquí recomiendo a los interesados en más detalles.

Este nuevo trabajo determina la estructura tridimensional de una ribozima artificial, una ligasa de ARN de clase I, cuya tasa catalítica es de las más rápidas entre todas la ribozimas. Su estructura 3D recuerda a un trípode, con tres “patas” que convergen a una unión común. Esta estructura permite identificar todos sus sitios activos y comprender, de forma preliminar, cómo esta ribozima cataliza la replicación (polimerización) de otras moléculas de ARN. Sin embargo, no está claro si es capaz de autorreplicarse a sí misma, el Santo Grial de la hipótesis del Mundo de ARN, encontrar una ribozima capaz de autorreplicarse.

Incrementar la entropía de la Tierra primitiva como posible origen de la vida

Dibujo20090702_surface_radiation_Archean_Earth_200_300_nm_wavelength_(C)_Cnossen

Si la vida tiene un origen termodinámico, la vida podrá ser explicada termodinámicamente. Así lo cree K. Michaelian en dos artículos en los que discute esta idea. La Tierra hace 4000 millones de años recibía una radiación solar veintitantos órdenes de magnitud superior a la actual con un pico alrededor de 260-280 nm. Las moléculas de ARN/ADN se encuentran entre las más eficientes absorbiendo esta radiación a presiones de una atmósfera. La enorme entropía sobre la Tierra en dicha época podía ser catalizada gracias a estas moléculas. En mi opinión, la idea es muy discutible, pero creo que muchos lectores de este blog estarán interesados en leer estos artículos de K. Michaelian, “Thermodynamic Origin of Life,” ArXiv, Submitted on 1 Jul 2009, y “Thermodynamic Function of Life,” ArXiv, Submitted on 30 Jun 2009. Permitidme traducir libremente los resúmenes de ambos artículos.

“Comprender la función termodinámica de la vida puede acercarnos a su origen. La producción de entropía en los sistemas alejados del equilibrio termodinámico es una medida natural de la tendencia de la Naturaleza para explorar todos los microestados alcanzables. El proceso que produce la mayor cantidad de entropía en la biosfera es la absorción y transformación de la luz del Sol. Según el autor, la vida se inició y existe hoy en día como catalizador dinámico de la absorción y transformación de la luz solar en calor, que puede ser redistribuido eficientemente por el ciclo del agua, los huracanes, las corrientes oceánicas y las corrientes de viento. Las moléculas de ARN y ADN se encuentran entre las moléculas más eficientes conocidas para absorber la luz ultravioleta que podría haber penetrado en la densa atmósfera primigenia, y además son muy rápidas a la hora de transformar esta luz en forma de calor que puede ser rápidamente absorbido por el agua líquida. Según el autor, el origen y la evolución de la vida estaría mediado por el imperativo termodinámico de incrementar la producción de entropía en la Tierra.”

“Aunque la teoría de la evolución de Darwin nos muestra la vida como un proceso de competencia por la supervivencia en un ambiente hostil, desde un punto de vista termodinámico, la vida es un proceso dinámico, fuera del equilibrio, que coevoluciona con su entorno abiótico. La componente viva de la biosfera con mayor masa son las plantas y las cianobacterias que se encargan de transpirar enormes cantidades de agua. Este proceso es clave en el ciclo del agua en la Tierra y la distingue de otros planetas vecinos, como Venus y Marte. El ciclo del agua, incluyendo la absorción de radiación solar en la biosfera, es con mucho el mayor proceso de producción de entropía en la Tierra. La función de la vida, desde esta perspectiva, es fundamentalmente termodinámica, actuando como un catalizador dinámico para la producción de energía. El papel de la vida animal, desde este punto de vista, es meramente servir a las plantas y a las cianobacterias para realizar su función termodinámica, ayudándolas a crecer y a dispersarse en áres inicialmente inhóspitas.”

Curiosas las ideas de Michaelian.

Por cierto, en Menéame podéis encontrar “Los rayos pudieron haber “cocinado la comida” para la vida primitiva (ING)” (traducido al español aquí) y entre los comentarios una recomendación de lectura “La cuestión del origen de la vida en la Tierra.”

Para qué sirve el ADN basura y por qué las células fabrican ARN a partir de él

Sólo del 1-2% del ADN humano produce ARN que codifica proteínas. El resto era calificado como ADN “basura” (junk), ¿sirve para algo? Anna Petherick trata de contestar a las preguntas del título en Nature News, Nature 454, 1042-1045 ( 2008 ), published online 27 August 2008 .

En el cromosoma humano 12 se encuentra un trozo de ADN llamado HOTAIR (HOX antisense intergenic RNA), que no codifica ninguna proteína, luego no corresponde a un gen, aunque sí produce una molécula de ARN de unos 2.200 nucleótidos, llamada STAR por su descubridor, que afecta a ciertos genes del cromosoma humano 2 relacionados con el crecimiento de células de la piel. HOTAIR fue descubierto por John Rinn, quien lo califica como una “joya en el mar de los ARN largos.” Esta gran molécula de ARN no codificante es similar a Xist, el ejemplo más famoso de ARN largo no codificante, descubierto en 1991, que tiene 17.000 nucleótidos.

Hace sólo una década el ARN era considerado un mero intermediario entre el ADN y la maquinaria molecular de fabricación de proteínas, sin embargo, hoy las cosas han cambiado. Thomas Gingeras en 2005 demostró que en algunas células el 80% del ADN produce moléculas de ARN. En 2008, se ha demostrado que el 74% del genoma de la levadura de la cerveza (Saccharomyces cerevisiae) y el 90% de la levadura Schizosaccharomyces pombe producen ARN no codificante. ¿Para qué sirven todos estos “genes de ARN”? Actualmente no se sabe para qué sirven, ni siquiera se sabe si todos sirven para algo o sólo algunos. En especial, la polémica está servida para los trozos grandes de ARN no codificantes, algunos de más de 10.000 nucleótidos. De hecho, hay investigadores que creen que son “errores” que han permanecido en el genoma durante la evolución.

¿Cómo se puden saber para qué sirven? Lo más fácil es alterar genéticamente el ADN y ver qué pasa. Por ejemplo, en ratones, Jürgen Brosius de la University of Münster, Alemania, ha eliminado 150 nucléotidos que gneran ARN no codificantes en neuronas de ratones. Como resultado, aparentemente, nada ha pasado. Eso sí, el comportamiento de los animales parece “ligeramente” alterado en ciertos test de inteligencia. pero los cambios son muy sutiles para poder asociarlos completamente a dicha alteración genética.

Los investigadores que creen que estas cadenas largas de ARN no sirven para nada ponen siempre como ejemplo ciertos estudios de levaduras que muestran que muchas cadenas largas de ARN son rápidamente destruidas por el exosoma nuclear, un complejo protéico que degrada el ARN. En dicho caso, es difícil suponer que tienen alguna función específica. Gingeras contesta a dichos investigadores que dos tercios de los ARN largos portan una etiqueta molecular que hace que sean rápidamente degradados, pero el tercio restante no la porta, al menos que se sepa, luego puede tener algún tipo de función específica.

La cuestión está abierta actualmente. Futuros estudios decidirá si los ARN largos forman parte del transcriptoma, las redes de señalización celular que determinan cuándo se debe expresar o reprimir la producción de genes, o por el contrario son en su mayoría meros “errores” de transcripción que se han propagado gracias a la evolución.