Varias noticias recientes sobre física de partículas que tienes que conocer

Dibujo20130327 BES III - Zc 3900 - possible exotic hadron

Posible observación de un hadrón exótico. BESIII, el colisionador electrón-positrón de Pekín, China, ha observado una resonancia hadrónica con una masa de (3899,0 ± 3,6 ± 4,9) MeV/c² y una anchura de (46 ± 10 ± 20) MeV, en 525 /pb de datos de colisiones que muestran desintegraciones de tipo e+ e → π± Zc(3900) → π+ π J/ψ, con una energía en el centro de masas de 4,26 GeV. BESIII ha sido ajustado para producir la resonancia Y(4260), un hadrón exótico que fue “descubierto” por BaBar en 2005, pero cuya interpretación como hadrón exótico aún no está aceptada por toda la comunidad; recuerda que a los hadrones exóticos se les llama con las letras X/Y/Z. La gran ventaja de BESIII en estos estudios es que puede ajustar la energía en el centro de masas para la producción de una resonancia concreta. La nueva resonancia Zc(3900) aparece en la desintegración de Y(4260). Para los físicos ha sido toda una sorpresa que tenga carga eléctrica. ¿Qué puede ser la nueva resonancia? Podría ser un estado tipo charmonium híbrido, un tetraquark (ccud), una molécula de dos mesones, o incluso algo más exótico, pero por ahora no se puede descartar que se trate de un artefacto de la QCD. Por cierto, BaBar (2007) y Belle (2008) ya observaron una señal de un posible hadrón exótico con una masa similar al que llamaron G(3900). La señal observada por BESIII es muy fuerte, según los autores supera los 8 sigmas. Por supuesto, la interpretación como hadrón exótico dará bastante que hablar en los próximos meses. El artículo técnico es BESIII Collaboration, “Observation of a charged charmoniumlike structure in e+e- to pi+pi-J/psi at \sqrt{s}=4.26 GeV,” arXiv:1303.5949, 24 Mar 2013. Más información sobre la noticia en “Observation of a charged charmoniumlike structure at BESIII,” BESIII News, 26 Mar 2013.

OPERA ha observado su tercer neutrino tau. La colaboración OPERA (unos 140 físicos de 11 países), situada en el Laboratorio de Gran Sasso del INFN (Italia), famosa por un cable mal conectado, ha observado su tercer neutrino tau. El experimento CNGS (CERN to Gran Sasso) envía chorros de neutrinos muónicos hacia varios experimentos en Gran Sasso y OPERA está especializado en medir los neutrinos tau, es decir, la aparición de un neutrino tau por oscilación de un neutrino muónico durante el viaje de 730 km entre el CERN y Gran Sasso. Ya no toma más datos (CNGS ya no funciona), pero se están analizando los datos ya recabados desde 2009 (en colaboraciones como OPERA el análisis de datos es el cuello de botella y no se finalizará hasta mediados 2014). En 2010 y 2012 se obervaron los dos neutrinos tau anteriores y se espera observar otros dos más (unos cinco tras el análisis de todos los datos). El anuncio oficial de la noticia en “OPERA observed a third neutrino tau,” INFN News, 26 Mar 2013; también recomiendo leer a Kathryn Jepsen, “OPERA snags third tau neutrino,” Symmetry Breaking, Mar 26, 2013. También puedes leer “Rare find backs shape-shifting neutrino,” PhysOrg.com, Mar 27, 2013.

La cámara de energía oscura DECam (Dark Energy Camera) es una cámara CCD de 570 megapíxeles (la mayor cámara digital del mundo) que cubre un área de 3 grados cuadrados de cielo (la Luna llena ocupa medio grado cuadrado de cielo). Fue instalada en noviembre pasado en el telescopio Blanco de 4 metros en el Observatorio Inter-Americano de Cerro Tololo, Chile. Forma parte de DES (Dark Energy Survey), un proyecto que se iniciará de forma oficial en septiembre de 2013 cuyo objetivo es obtener en 525 noches de observación (distribuidas en cinco años) un mapa de la distribución de la energía oscura en el universo. DES estudiará unos 200 millones de galaxias y medirá la curva de luminosidad de unas 4000 supernovas de tipo Ia (de ahí que se diga que es un telescopio de energía oscura). DES también estudiará cúmulos galáctivos, las oscilaciones acústicas de bariones (BAO) y los efectos de lentes gravitatorias débiles. Mientras no funciona para el proyecto DES, la cámara DECam es usada para otro tipo de observaciones (búsqueda de asteroides, estudios de galaxias, etc.), como nos cuenta Andre Salles, “Astronomers give Dark Energy Camera rave reviews,” Symmetry, March 27, 2013.

¿Por qué los escarabajos verdes son verdes?

Dibujo20130327 Photographs three beetles - TEM cross-sections multilayers responsible for these colors

Los escarabajos verdes deben su color a la estructura multicapa (superred óptica) de sus élitros (alas externas endurecidas). Están formados por capas alternas de diferente índice de refracción (1,55 y 1,68) con un grosor cada una de unos 0,09 μm. La estructura multicapa da lugar a la aparición de bandas prohibidas (bandgaps) en las que toda la luz se refleja (R=1), o ninguna se transmite (T=0); una de estas bandas está en el intervalo de longitudes de onda entre 567 nm y 597 nm, siendo la responsable del bello tono verde que les caracteriza. Para analizar la reflexión y transmisión de la luz en una estructura multicapa de N capas, se calculan para una celda unidad y se utiliza una relación de recurrencia que obtiene el resultado para N capas a partir del resultado de N-1 capas. Para la celda unidad hay que tener en cuenta la reflexión total interna que conduce a múltiples reflexiones de la luz antes de escapar de la superred. Los cálculos son sencillos (de hecho, yo he publicado cálculos similares, pero cuánticos, para superredes fractales). Los interesados en los detalles disfrutarán con Ariel Amir, Peter Vukusic, “Elucidating the stop bands of structurally colored systems through recursion,” Am. J. Phys. 81: 253-257 (2013). Por cierto, los escarabajos verdes que aparecen en la fotografía son (a) Torynorhina flammea chicheryi, (b) Chrysochroa raja, y (c) Gastrophysa viridula. Debajo aparece la estructura de sus élitros observada mediante imágenes TEM (microscopio electrónico de transmisión).

Sigue leyendo

Ellis y You actualizan su estimación LHC+Tevatron+LEP para los acoplamientos del Higgs

Dibujo20130326 higgs couplings - lhc - tevatron - lep

Cualquiera puede hacerlo, pero si lo hace John Ellis parece que tiene más valor. Combinar los datos del LHC (ATLAS+CMS), Tevatron (CDF+DZero) y LEP sobre la búsqueda del Higgs es muy difícil si se hace con rigor (colisión a colisión), pero muy fácil si se hace usando el teorema central del límite. El resultado será parecido (pues la estadística nunca miente). El análisis de Ellis y You conduce a un acoplo (combinado) para el Higgs de μ = 1,02 ± 0,12 (el valor para el Higgs del modelo estándar es μ = 1). En el plano (a,c), donde a caracteriza el acoplamiento a los bosones vectoriales y c a los fermiones, se obtiene el mejor ajuste para a = 1,03 ± 0,06 y c = 0,84 ± 0,15 (el modelo estándar predice a=1 y c=1); separando el acoplo a los fotone (cγ) del acoplo a otros bosones vectoriales (cg) se obtiene cγ = 1,18  ±  0,12 y cg = 0,88 ± 0,11. Estos ajustes apuntan al Higgs del modelo estándar, descartando muchas de las alternativas; el canal más responsable de este buen ajuste es, sin lugar a dudas, el canal difotónico (γγ) analizado por CMS (LHC). Los interesados en los detalles, canal a canal, pueden consultar John Ellis, Tevong You, “Updated Global Analysis of Higgs Couplings,” arXiv:1303.3879, 15 Mar 2013. Repito, muchos otros han obtenido combinaciones similares (a las que yo llamo “oficiosas” aunque el término no guste a algunos de vosotros; quizás habría que llamarlas “estadísticas” o con más rigor “basadas en el teorema central del límite”), pero siendo Ellis el Erdös de la física de partículas, creo que muchos agradecerán que haya destacado su contribución.

Dibujo20130326 global combination - plane a-c for higgs couplings - lhc - tevatron - lep

¿Puede crear agujeros negros el LHC?

Dibujo20130326 Snapshots rest mass density logarithmic scale for simulations appearance two separate apparent horizons

José Manuel Nieves afirma que “El LHC sí puede crear agujeros negros,” ABC Ciencia, 11 Mar 2013, porque “dos investigadores de la Universidad de Princeton han calculado que la cantidad de energía necesaria es 2,4 veces menor de lo que se creía hasta ahora.” Obviamente, este resultado significa todo lo contrario. Si la energía necesaria es 2,4 veces menor de lo que se creía y no se ha observado ninguno con una masa menor de 4,2 TeV (dato más reciente de CMS para colisiones protón-protón a 8 TeV c.m.), el nuevo resultado significa que no se pueden producir agujeros negros en el LHC con energía menor de 10 TeV. Bajar la energía para la producción de agujeros negros, como no han sido observados, incrementa el límite de exclusión, lo que no significa que sea más fácil producirlos en el LHC, más bien todo lo contrario. Si te has hecho un lío con mi argumento, relee lo anterior y luego sigue. Por supuesto, si no hay dimensiones extra en el espaciotiempo, para producir agujeros negros en el LHC se necesitan energías del orden de la escala de Planck, así que un factor de 2,4, o incluso un factor de 2400, o uno de 2 400 000 000, no ayudan en nada a facilitar que el LHC produzca agujeros negros. La escala de Planck está demasiado lejos de la escala de energía alcanzable por el LHC (hay que comparar 14000 GeV con unos 12000 000 000 000 000 000 GeV). Recomiendo leer “Synopsis: Black Holes Emerge from Collisions,” Physics, March 7, 2013, y para los más osados, el artículo técnico de William E. East, Frans Pretorius, “Ultrarelativistic Black Hole Formation,” Phys. Rev. Lett. 110: 101101 (2013) [arXiv:1210.0443]. El artículo citado de la Colaboración CMS es “Search for microscopic black holes in pp collisions at sqrt(s) = 8 TeV,” arXiv:1303.5338, 21 Mar 2013. También recomiendo leer a “No hay agujeros negros en el LHC, por ahora…,” Cuentos Cuánticos, 25 marzo, 2013.

Una curiosidad sobre la velocidad de la luz y el vacío cuántico

Dibujo20130326 photon - pair fermion-antifermion - vacuum polarization

La teoría de la relatividad especial introduce una velocidad límite constante cuyo valor no depende del observador. Una partícula de masa nula, como el fotón, la partícula asociada al campo electromagnético, se mueve a dicha velocidad. Dos nuevos artículos aparecidos en el European Journal of Physics consideran la posibilidad de que la velocidad límite de la relatividad (crel) no coincida con la velocidad de los fotones (cluz<crel). Obviamante, en dicho caso el fotón tendría masa (muy pequeña, pero no nula). Para evitar esta conclusión, los autores asumen que actúa un mecanismo similar al mecanismo de Higgs, pero con pares virtuales fermión-antifermión; los fotones sin masa interaccionan con pares virtuales en lugar de con bosones de Higgs virtuales. En opinión de los autores, este mecanismo explicaría por qué los fotones se mueven a la velocidad a la que se mueven. Siendo el origen de la velocidad de la luz una interacción cuántica, su valor debería fluctuar. Según los autores de estos trabajos futuros experimentos podrían medir estas fluctuaciones confirmando (o refutando) sus ideas. Me he enterado gracias al meneo de la noticia “Ephemeral vacuum particles induce speed-of-light fluctuations,” Springer News, 25 March 2013 [traducción al español en Axxón]. Los artículos técnicos son Gerd Leuchs, Luis L. Sanchez-Soto, “A sum rule for charged elementary particles,” The European Physical Journal D 67: 57, 21 March 2013 [arXiv:1301.3923] (Luis es miembro del Departamento de Óptica de la Universidad Complutense de Madrid), y Marcel Urban, Francois Couchot, Xavier Sarazin, Arache Djannati-Atai, “The quantum vacuum as the origin of the speed of light,” The European Physical Journal D 67: 58, 21 March 2013 [arXiv:1302.6165].

Como he comentado en Menéame, “el artículo técnico de Urban et al. es pura numerología. No se pueden usar unas leyes físicas para explicar dichas leyes físicas; este tipo de argumentos cíclicos se caen por su propio peso. Usar la relatividad especial (con una velocidad  crel distinta de la velocidad de la luz en el vacío cluz), como por ejemplo la famosa fórmula de Einstein para la equivalencia entre masa y energía, para deducir uno de los postulados de la relatividad especial (relativo a la velocidad de las partículas sin masa) no tiene ningún sentido. Aún así, el artículo puede ser interesante para discutir en un primer curso de relatividad especial y/o electrodinámica cuántica. Como mera curiosidad, eso sí.”

Algo parecido ocurre con “el otro artículo técnico, de Luechs y Sanchez-Soto, que presenta ideas similares. Su cálculo del número de pares virtuales partícula-antipartícula, obviamente, contradice la electrodinámica cuántica (p.ej. el cálculo del corrimiento de Lamb requiere considerar un número infinito de pares virtuales, si se introduce un corte (número finito de pares) se obtiene un valor que difiere del experimento). Como en el anterior artículo, se trata de una mera curiosidad.”

PS: Como bien nos indica Mario Herrero (@Fooly_Cooly), la invarianza gauge de la electrodinámica cuántica implica que la contribución de los diagramas con loops de fermiones es nula (identidad de Ward).

PS: Por cierto, mi crítica es “muy blanda” comparada con la de Lubos Motl, “Speed of light is variable: only in junk media,” TRF, March 25, 2013, pero confieso que (sin que sirva de precedente) comparto la opinión de Lubos.

La estructura del canto de los pájaros

Dibujo20130227 Elemental gesture dynamics are encoded by song premotor cortical neurons

¿Cuál es la unidad básica del habla? ¿La palabra, la sílaba o el fonema? Para responder a esta cuestión los lingüistas llevan décadas estudiando el canto de los pájaros. Hay estudios que afirman que se trata de la sílaba (unidad con una duración entre 0,1 y 0,25 segundos), mientras que otros apuntan a unidades menores de 0,1 segundos, llamadas “detalles” (gestures en inglés). Nature ha publicado un estudio neurológico en el pinzón cebra (Taeniopygia guttata) que apoya la teoría de los “detalles” (como unidades que conforman las sílabas). Ana Amador (Univ. Chicago) y sus colegas han estudiado las neuronas de una zona del encéfalo llamada HVC (High Vocal Center), esencial para el canto de las aves. La actividad de estas neuronas ha sido registrada mientras los pájaros cantan y cuando se reproduce una grabación de sus cantos mientras están dormidos. Al comparar estas señales se ha descubierto que la actividad de estas neuronas ocurre en las transiciones entre “detalles,” lo que sugiere que estos son las unidades básicas del canto. Obviamente, no se trata de la respuesta definitiva a la cuestión sobre la unidad básica del habla, pero apunta a que la respuesta está en los fonemas. Nos lo cuenta Todd W. Troyer, “Neuroscience: The units of a song,” Nature AOP 27 Feb 2013, que se hace eco del artículo técnico de Ana Amador, Yonatan Sanz Perl, Gabriel B. Mindlin, Daniel Margoliash, “Elemental gesture dynamics are encoded by song premotor cortical neurons,” Nature AOP 27 Feb 2013.

Sigue leyendo

El telescopio espacial Planck pone a la inflación en la ruta hacia el Premio Nobel de Física

El resultado más importante del telescopio Planck desde el punto de vista de posibles Premios Nobel de Física es la confirmación a cinco sigmas de la existencia de la inflación cósmica. Ésta predice que el índice espectral ns tiene un valor menor que la unidad y el resultado de Planck es 0,9608 ± 0,0054, que implica una desviación a 7,2 sigmas respecto a la unidad. ¿Por qué yo no he destacado este punto hasta ahora? Porque WMAP9 combinado con otros datos cosmológicos ofreció un valor de 0,9608 ± 0,0080, que implica una desviación a 4,9 sigmas. Por tanto, no es Planck el único que pone a la inflación en la ruta al Nobel. ¿Habrá Nobel para la inflación en 2014? Yo no lo creo. Hay modelos sin inflación, aunque con un ajuste fino, también predicen un valor del índice espectral menor que la unidad. La prueba de fuego definitiva serán los modos B, que no serán publicados hasta 2014 (como pronto). Por ello, en mi opinión, la inflación recibirá un Premio Nobel, como pronto en 2016. Por supuesto, espero equivocarme y que se adelante. ¿Quiénes recibirán el Nobel? En mi opinión hay tres firmes candidatos Alan Guth, Andrei Linde y Paul Steinhardt.

Dibujo20130325 Alan Guth - Paul Steinhardt - Andrei Linde - Dirac medal 2002

Medalla Dirac 2002 para Alan Guth (MIT), Paul Steinhardt (Princeton) y Andrei Linde (Stanford).

Los modelos más sencillos de la inflación (basados en la existencia del inflatón, un campo escalar con un potencial que cambia lentamente de la forma φn) predicen que el espectro de fluctuaciones primordiales es gaussiano, pero no es invariante ante transformaciones de escala, sino que presenta ligerísimas desviaciones. El índice espectral escalar ns mide estas pequeñas desviaciones y la inflación predice que ns<1. La inflación también predice la producción de ondas gravitacionales que se reflejarán en la aparición de modos B en la polarización del fondo cósmico de microondas. La observación de este fenómeno por parte del telescopio espacial Planck será la ratificación definitiva de la inflación y además permitirá seleccionar entre los diferentes modelos que la describen. En mi opinión, el comité Nobel es muy conservador y esperará a la publicación de estos datos antes de plantearse la concesión de un Premio a la inflación. 

Más información sobre la inflación y los modos B en este blog en “La inflación cósmica y las anisotropías en la polarización del fondo cósmico de microondas.”

La búsqueda de las impartículas

Dibujo20130221 Mineral proportions pyrolite model as function depth and resulting iron and electron densities in the various electronic spin states

El modelo estándar de la física de partículas describe el universo como campos cuánticos en interacción. Numerosas extensiones teóricas predicen la existencia de interacciones espín-espín de largo alcance mediadas por impartículas o por bosones axiales de espín uno. Hunter et al. han propuesto en Science usar la Tierra como fuente de espines polarizados en interacción para determinar los límites máximos a estas interacciones. Resultados geoquímicos y geofísicos recientes, junto a medidas realizadas en tres laboratorios, les permiten estimar la señal que se espera poder medir en el campo de los geoelectrones polarizados en espín del manto de la Tierra (los espines corresponden a los electrones de los minerales que contienen hierro en el manto). Estudiar cómo cambian las interacciones espín-espín conforme cambian la posición geográfica y la orientación del aparato de medida permitirá obtener límites superiores mucho más bajos que los que permiten los experimentos en laboratorio actuales para estas interacciones espín-espín exóticas. El artículo técnico es Larry Hunter, Joel Gordon, Stephen Peck, Daniel Ang, Jung-Fu Lin, “Using the Earth as a Polarized Electron Source to Search for Long-Range Spin-Spin Interactions,” Science 339: 928-932, 22 Feb 2013.

Sigue leyendo

Francis en ¡Eureka!: El universo según el telescopio espacial Planck de la ESA

Dibujo20130324 Planck spacecraft - cosmic microwave background

Ya está disponible el audio de mi sección ¡Eureka! en el programa La Rosa de los Vientos de Onda Cero. Sigue este enlace para escuchar audio, son sólo 9 minutos. Como siempre una trasncripción libre del audio.

En el programa del 30 de diciembre de 2012 auguramos que una de las grandes noticias de 2013 sería los datos sobre el fondo cósmico de microondas del telescopio espacial Planck de la Agencia Espacial Europea (ESA). Esta semana se han publicado los primeros datos, ¿han sido tan revolucionarios como se esperaba? Para muchos de nosotros ha sido una decepción, pues los datos que podrían ser más revolucionarios no se han publicado aún. El telescopio espacial Planck mide la radiación de fondo cósmico de microondas con una precisión sin precedentes, pero el análisis de los fenómenos más sutiles, que experimentos anteriores no podían observar, está resultando más difícil de lo esperado. Los científicos responsables de la misión Planck han prometido nuevos datos para dentro de unos seis meses (sobre la polarización) y para dentro de un año (sobre los modos B), resultados muy importante para conocer los detalles de la inflación cósmica. Aún así,  los resultados publicados esta semana son muy interesantes.

Muchos oyentes se preguntarán, ¿qué es el fondo cósmico de microondas que observa el telescopio espacial Planck? Todo el mundo ha oído hablar de la teoría del big bang (o gran explosión). En los primeros instantes del universo no había átomos, que se formaron cuando el universo tenía unos 380 mil años y una temperatura promedio de unos 4000 Kelvin. El plasma de protones, de carga positiva, y electrones, de carga negativa, se transformó en un gas neutro de átomos de hidrógeno cuando éstos se combinaron y el universo se volvió casi transparente a la luz, como es hoy en día. El plasma era luminoso porque las partículas con carga eléctrica absorben y reemiten fotones (partículas de luz). El fondo cósmico de microondas es el resultado de la luz que llenaba el universo cuando tenía sólo 380 mil años. Esta luz era visible (con un color blanquiazul parecido al de un tubo fluorescente). Al enfriarse el universo, la temperatura de la radiación se redujo y ahora mismo es muy fría, de sólo 2,72 55 Kelvin (grados sobre el cero absoluto de temperatura). Se trata de fotones de microondas, con frecuencias entre 25 y 1000 GHz (los teléfonos móviles emiten microondas por debajo de los 2 GHz) [que corresponden a longitudes de onda entre 1 cm y 0,3 mm, más o menos]. Como curiosidad, alrededor del 1% de la nieve que se veía en los televisores de tubo de rayos catódicos, cuando no sintonizaban ningún canal, era fondo cósmico de microondas recogido por la antena del televisor.

Si el fondo cósmico de microondas se formó cuando el universo tenía 380.ooo años, ¿cómo es posible que nos dé información sobre los primeros instantes del big bang? El fondo cósmico de microondas es muy homogéneo e isótropo, mires hacia donde mires en el universo siempre parece igual. Pero por fortuna muestra unas pequeñísimas variaciones (llamadas anisotropías). La temperatura del fondo cósmico de microondas varía menos de 0,0005 Kelvin, es decir, entre 2,725 y 2,726 Kelvin. Estas variaciones tan pequeñas son las que se muestran en los mapas del fondo cósmico de microondas. Se cree que el origen de estas anisotropías son las fluctuaciones cuánticas primigenias del universo, que han sido amplificadas por la expansión cósmica. También hay fluctuaciones de primer plano debidas a la gravedad de la materia y la energía que existe ahora mismo en el universo; las galaxias, los cúmulos galácticos y otras grandes estructuras del universo afectan al fondo cósmico de microondas. Por ello podemos aprender muchas cosas sobre el universo primigenio y sobre el universo actual gracias al análisis del mapa del cielo en microondas que nos ha ofrecido el telescopio espacial Planck de la ESA.

Los nuevos datos indican que el universo es más viejo de lo que se pensaba. ¿Cómo se puede saber la edad del universo midiendo el fondo cósmico de microondas? Me gustaría aclarar que no es verdad que ahora sabemos que el universo es más viejo, como han dicho algunos medios. Los últimos datos del telescopio espacial Wilkinson MAP de la NASA indicaban que el universo tenía una edad de 13.772 millones de años con un error de 59 millones de años. La nueva medida del telescopio espacial Planck de la ESA indica que el universo tiene 13.798 millones de años con un error de sólo 37 millones de años. El nuevo valor de la edad del universo está dentro del margen de error de la medida anterior. Por tanto, no es correcto decir que el universo es ahora más viejo. Sólo podemos decir que ahora conocemos mejor la edad que tiene. Esta edad se obtiene aplicando la teoría de la relatividad de Einstein para explicar el “sonido” de las fluctuaciones del fondo cósmico de microondas. Igual que al escuchar música podemos saber qué instrumento musical la interpreta. Se puede analizar el espectro multipolar de la radiación cósmica y saber qué parámetros del universo la explican.

¿Qué sabemos ahora sobre el contenido de materia, materia oscura y energía oscura del universo? Quizás el resultado más sorprendente de Planck ha sido un cambio en las proporciones del contenido del universo actual. En concreto, contiene menos energía oscura de lo que se pensaba. Sólo el 68,3% del universo es energía oscura, cuando hace una semana se creía que era el 71,4%. Por tanto, la cantidad de materia ha crecido. Hoy sabemos que el contenido de materia oscura del universo es del 26,8%, cuando hace una semana se creía que era del 24%, y el materia ordinaria (lo que los físicos llamamos materia bariónica) también ha crecido hasta un 4,9% del universo. No son cambios muy grandes, pero el error experimental en los nuevos valores es mucho más pequeño, luego son valores mucho más fiables. Además, ahora sabemos que hay sólo 3 tipos de neutrinos. Medidas anteriores del fondo cósmico de microondas habían sugerido que podría haber un cuarto tipo, un neutrino estéril, pero la nueva medida de Planck lo descarta de forma definitiva. Más aún, Planck indica que la suma de las masas de los neutrinos es menor de 0,23 eV (aunque no impone un límite inferior). 

¿Se ha observado algo anómalo o inesperado sobre el universo? El telescopio espacial WMAP observó una anomalía en el fondo cósmico de microondas llamada con el curioso nombre de “eje del mal” y una mancha fría en la dirección de la constelación de Eridanus, llamado “punto frío de Eridanus”. Muchos expertos pensaban que era un error instrumental de WMAP y que el telescopio espacial Planck no observaría la misma anomalía. Sin embargo, para sorpresa de todos, estas dos anomalías también se observan en los nuevos datos. Estas anomalías podrían indicar que hay algo sobre el universo a gran escala que aún no entendemos bien.  Sin embargo, muchos físicos creen que no es algo preocupante porque estas anomalías están cerca del plano de la eclíptica (el plano del sistema solar donde están los planetas). Quizás lo que no entendemos bien son las fuentes de microondas en el entorno del sistema solar. Como siempre, el universo guarda secretos que han de ser desvelados por los cosmólogos y astrofísicos.

Como siempre, si no has oído aún el audio, sigue este enlace. 

Nota dominical: Einstein y Ehrenfest discutieron el colapso de la función de onda en 1922

Dibujo20130318 stern gerlach experiment - postcard communicated to niels bohr

Puede parecer increíble, pero el problema del colapso de la función de onda cuántica fue discutido por Albert Einstein y Paul Ehrenfest en un artículo conjunto que se envió en 1922, poco después de la publicación del famoso experimento de Stern y Gerlach. Durante una visita de Einstein a Ehrenfest en Leiden (Países Bajos), entre el 29 de abril y el 13 de mayo de 1922, discutieron el famoso experimento de Stern-Gerlach (enviado a publicación el 1 marzo) y escribieron un artículo conjunto que enviaron a publicación el 21 de agosto. El artículo de Einstein-Ehrenfest discute el problema de la medida en mecánica cuántica y la importancia del colapso de la función de onda si lo leemos desde un punto de vista moderno( ya que el concepto de función de onda aún no había sido introducido por Erwin Schrödinger). “¿Cómo saben los átomos que dirección tomar en el experimento?” Si el proceso fuera clásico, Einstein y Ehrenfest calculan que la desviación de los átomos requeriría miles de millones de segundos, cuando según el experimento el proceso tarda menos de 100 microsegundos. Por ello, afirman que el experimento muestra una transición brusca entre estados cuánticos (hoy diríamos que muestra el colapso de la función de onda) y que se trata de un experimento ideal para ilustrar las diferencias entre la medida en física clásica y en física cuántica. Realmente sorprendente, sobre todo, porque el problema de la medida en mecánica cuántica no se empezó a discutir hasta un lustro más tarde. Nos lo cuenta Issachar Unna, Tilman Sauer, “Einstein, Ehrenfest, and the quantum measurement problem,” Ann. Phys. 525: A15–A19 (2013). El artículo técnico original es A. Einstein, P. Ehrenfest, “Quantum Theoretical Comments on the Experiment of Stern and Gerlach,” Zeitschrift fur Physik 11: 31-34, 1922.