La incertidumbre en la vida media del neutrón

Dibujo20130128 neutron lifetime through time from year 1960 until 2010

El neutrón y el protón forman los núcleos de los átomos; el protón es estable (su vida media es superior a 10³² años, según PDG 2012), pero el neutrón es inestable (vía la interacción electrodébil se desintegra en un protón) y aislado su vida media es de solo 880,1 ± 1,1 segundos (14 minutos y 40,1 segundos), según el PDG 2012; en muchos isótopos también es inestable aunque su vida media es mucho más larga (el carbono-14 decae en el nitrógeno 14 con una vida media de 5.730 años). Sin embargo, al releer libros antiguos uno descubre que se pensaba que la vida media era de unos 17 minutos. ¿Por qué la diferencia es tan grande? La razón es que medir la vida media de un neutrón aislado es muy difícil y el resultado depende del método experimental utilizado (los valores en discordia difieren en hasta 10 segundos). ¿Por qué es importante la medida de la vida media del neutrón? Para verificar las teorías de nucleosíntesis primordial en el big bang, así como varios parámetros necesarios para la cosmología de precisión y para el modelo estándar de las partículas elementales (como el parámetro Vud). Nos lo contó Rebecca Cheung, “Secret of a Lifetime. How long a neutron lives holds clues to the cosmos,” ScienceNews, May 4, 2012. Más información técnica en Fred E. Wietfeldt, Geoffrey L. Greene, “Colloquium: The neutron lifetime,” Rev. Mod. Phys. 83: 1173–1192, 2011, y en A. N. Ivanov, M. Pitschmann, N. I. Troitskaya, “Neutron Beta-Decay as Laboratory for Test of Standard Model,” arXiv:1212.0332, Dec 3, 2012.

Sigue leyendo

El caos cuántico en condensados de Bose-Einstein con acoplamiento espín-órbita

Dibujo20130128 Real-space -left- momentum density -right- distributions for a spin-orbit-coupled gas of bosons in a chaotic regime

En general, un sistema físico clásico es no lineal, disipativo y caótico; por el contrario, uno cuántico es lineal, conservativo y estocástico. Todo sistema clásico es cuántico (se puede “cuantizar”), pero hay sistemas cuánticos sin análogo clásico. El caos cuántico describe lo que le sucede a un sistema cuántico que tiene un análogo clásico que es caótico (en el sentido del caos determinista en sistemas disipativos). ¿Se puede aplicar el concepto de caos cuántico a sistemas cuánticos sin análogo clásico? Un condensado de Bose-Einstein es un sistema cuántico macroscópico, pero su límite clásico como sistema de muchos cuerpos no está bien definido (la estadística cuántica no tiene análogo clásico). Sin embargo, podemos usar la estadística de las fluctuaciones de los niveles de energía y de las funciones de onda de estos sistemas macroscópicos para estudiar en laboratorio su grado de caos (“caoticidad”) y la transición de comportamiento regular a caótico. Un nuevo artículo propone el estudio del caos cuántico en condensados de Bose-Einstein que presentan acoplamiento espín-órbita. Utilizando láseres se puede inducir cambios entre los dos estados del espín de cada uno de los átomos del condensado y gracias a estos cambios en espacio y tiempo se puede inducir, según la nueva propuesta, una transición entre un comportamiento cuántico regular y caótico. La propuesta, por ahora, es solo teórica y está basada en argumentos cuasiclásicos, pero parece razonable que pueda ser demostrada de forma experimental. En su caso, sería el sistema caótico cuántico ideal para estudiar en laboratorio el caos cuántico en sistemas cuánticos sin análogo clásico. Nos cuenta esta sugerente propuesta Eva-Maria Graefe, “Viewpoint: Quantum Chaos on Display,” Physics 6: 9, Jan 22, 2013, que se hace eco del artículo técnico de Jonas Larson, Brandon M. Anderson, Alexander Altland, “Chaos-driven dynamics in spin-orbit-coupled atomic gases,” Physical Review A 87: 013624, Jan 22, 2013 [PDF gratis]. Me ha enterado gracias a un tuit de Mauricio Zapata (@mezvan): “creo que esto es un buen trabajo para…

Sigue leyendo

EHT, el radiotelescopio que nos permitirá ver Sgr A*, el agujero negro supermasivo de la Vía Láctea

Dibujo20130127 sgrAstar - supermassive black hole - milky way

EHT (Event Horizon Telescope) es un radiotelescopio “virtual” del tamaño de la Tierra gracias a la interferometría de muy larga base (VLBI). Se observa un objeto celeste de forma simultánea con un conjunto de radiotelescopios situados en lugares muy distantes entre sí. La radiación de ese objeto es recibida en instantes diferentes en cada radiotelescopio, según su posición sobre la Tierra, formándose un patrón de franjas de interferencia que permite reconstruir la imagen como si se tratase de un único radiotelescopio. Se espera que EHT “fotografíe” el agujero negro supermasivo central de la Vía Láctea, llamado SgrA*, dentro de unos cinco años. SgrA* fue postulado en 1971 y la primera prueba astrofísica de su existencia se obtuvo en 1974; gracias al movimiento de las estrellas que se encuentran cerca de SgrA* se ha podido determinar su masa, unos cuatro millones de masas solares, que está concentrada en una región con una radio menor de 45 UA (la unidad astronómica es la distancia media entre la Tierra y el Sol); por comparar, el afelio de Plutón está a 49 UA (el punto más alejado del Sol). Esta semana se ha celebrado en el Observatorio Steward de la Universidad de Arizona una conferencia sobre EHT (18-20 de enero). Las transparencias de las charlas están disponibles en la web. Más información en Evan Ackerman, “Earth-sized radio telescope to take first pic of black hole,” DVice, Jan 24, 2013 (visto gracias a Iván García Cubero @Wis_Alien).

Sigue leyendo